Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Caracterización y perfil lipídico de aceites de microalgas

Resumen

El uso creciente del biodiésel ha impulsado la búsqueda de nuevas materias primas, dentro de las que se destacan las microalgas. En esta investigación se estudió el cultivo de las microalgas Chlorella sp. y Dunaliella salina bajo diferentes condiciones de pH y concentración de nitrógeno (mgL-1), y la caracterización de los aceites obtenidos, con el fin de evaluar su potencial uso como materia prima en la producción de biodiésel. La D. salina alcanzó una máxima concentración celular de 1.15x106 células mL-1 en 6 días de cultivo en unas condiciones de 8.5 pH y 0.1 mg L-1 concentración de nitrógeno, mientras que Chlorella sp. presentó una máxima concentración celular de 2.6x107 células mL-1 en 14 días de cultivo en unas condiciones de 7.5 pH y 0.1 mg L-1 concentración de nitrógeno. La extracción de aceite intracelular de las microalgas cultivadas bajo las mejores condiciones de crecimiento celular se realizó empleando el método modificado de Bligh &amp, Dyer. Al determinar el perfil de ácidos grasos de los aceites extraídos de ambas microalgas, se  encontraron en mayor proporción dos ácidos grasos insaturados: ácido linolénico y ácido oleico. En el aceite de D. salina se encontró una concentración de 51% p/p de ácido linolénico, mientras que para el aceite de Chlorella sp. fue de 39% p/p. Con relación al ácido oleico, el aceite de Chrorella sp. presentó una concentración de 35% p/p, superior al aceite de D. salina, con 25% p/p.

Palabras clave

Ácidos grasos, Biodiésel, Lípidos, Microalgas.

PDF HTML

Citas

  1. R. Halim, M. K. Danquah and P. A. Webley, “Extraction of oil from microalgae for biodiesel production: A review”, Biotech. Adv., vol. 30, pp. 709-732, Mayo–Jun. 2012.
  2. E. Sánchez, K. Ojeda, M. El-Halwagi et al., “Biodiesel from microalgae oil production in two sequential esterification/transesterification reactors: Pinch analysis of heat integration”, Chem. Eng. J., vol. 176–177, pp. 211-216, Dec. 2011.
  3. H. Li, Z. Liu, Y. Zhanget al., “Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction”, Bioresource Technology, vol. 154, pp. 322-329, Feb. 2014.
  4. Y. Peralta-Ruiz, A.D. González-Delgado and V. Kafarov, “Evaluation of alternatives for microalgae oil extraction based on exergy analysis”, Applied Energy, vol. 101, pp. 226-236, Jan. 2013.
  5. T. Mata, A. Martins and N. Caetano, “Microalgae for biodiesel production and other applications: A review”, Renewable and Sustainable Energy Reviews, vol. 14, pp. 217-232, Jan. 2010.
  6. G. Tüccar and K. Aydın, “Evaluation of methyl ester of microalgae oil as fuel in a diesel engine”, Fuel, vol. 112, pp. 203-207, Oct. 2013.
  7. C. Yoo, S.Y. Jun, J. Y. Lee et al., “Selection of microalgae for lipid production under high levels carbon dioxide”, Bioresource Technology, vol. 101, pp. S71-S74, Jan. 2010.
  8. J. Y. Lee, C. Yoo, S. Y. Jun et al., “Comparison of several methods for effective lipid extraction from microalgae”, Bioresource Technology, vol. 101, pp. S75-S77, Jan. 2010.
  9. Y. M. Dai, K. T. Chen and C. C. Chen, “Study of the microwave lipid extraction from microalgae for biodiesel production” Chem. Eng. J., vol. 250, pp. 267-273, Aug. 2014.
  10. C. M. Teixeira and E. Morales, “Microalga como matéria-prima para a produção de biodiesel,” Annals of I Congress of the Brazilian Network of Biodiesel Technology, Brasilia, 2006.
  11. C. Safi, B. Zebib, O. Merah et al., “Morphology, composition, production, processing and applications of Chlorella vulgaris: A review”, Renewable and Sustainable Energy Reviews, vol. 35, pp. 265-278, , Jul. 2014.
  12. P. Lamers, M. Janssen, R. De Voset al., “Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga”, J. of Biotech., vol.162, pp. 21-27, Nov. 2012.
  13. P.R. Walne, “The Culture of Bivalve Molluscs: 50 Years of Experience at Conwy”, Fishing News, West Byfleet, pp. 173, 1974.
  14. S. Archanaa, S. Moise and G.K. Suraishkumar, “Chlorophyll interference in microalgal lipid quantification through the Bligh and Dyer method”, Biomass and Bioenergy, vol. 46, pp. 805-808, Nov. 2012.
  15. NORMA NTC 218. Grasas y aceites vegetales y animales. Determinación del índice de acidez y de la acidez.
  16. NORMA NTC 236. Grasas y aceites vegetales y animales. Determinación del índice de peróxido.
  17. NORMA NTC 287. Grasas y aceites animales y vegetales. Determinación del contenido de humedad y materia volátil.
  18. NORMA NTC 289. Grasas y aceites animales y vegetales. Determinación del índice de refracción.
  19. NORMA NTC 336. Grasas y aceites animales y vegetales. Método de la determinación de la densidad.
  20. NORMA NTC 5478. Grasas y aceites comestibles. Determinación del punto humo, chispa e ignición método Cleveland de copa abierta.
  21. N. Aguirre, J. Palacio, I. Correa et al., “Ensayos de bioestimulación algal con diferentes relaciones nitrógeno: fósforo, bajo condiciones de laboratorio”, Revista de Ingenierías Universidad de Medellín, vol. 6, pp. 11-21, Jul. – Dic. 2007.
  22. R. Salomón, I. Albarracin and G. Pio, “Sensibilidad de Chlorella vulgaris y Scenedesmus quadricauda a la Cipermetrina. Fase preliminar”, Retel, vol. 7, pp. 1-15, May. 2005.
  23. V. Díaz and C. Ordoñez, C. “Evaluación del pH y la agitación del medio más adecuado para el crecimiento de la Dunaliella salina en condiciones de laboratorio”, Tesis de Grado Microbiología Industrial, Pontificia Universidad Javeriana, Bogotá, 2006.
  24. D. Fimbres, L. Mercado, A. Murguía et al., “Crecimiento y biomasa de Dunaliella sp. cultivada en medios limitantes en nitrógeno”, Biotecnia, vol. 12, pp. 58-66, Sept. – Dic. 2010.
  25. A. Vásquez-Suárez, M. Guevara, G. Salazar et al., “Crecimiento y composición bioquímica de cuatro especies de Dunaliella para ser utilizadas en Acuicultura”, Boletín del Centro de Investigaciones Biológicas de la Universidad de Zulia, vol. 41, pp. 181-194, 2007.
  26. L. Rodolfi, G. Chini-Zittelli, N. Bassi et al., “Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor”, Biotechnology and Bioengineering, vol. 102, p.p. 100–112, Jan. 2009.
  27. Y. Liang, N. Sarkany and Y. Cui, “Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions”, Biotechnology Letters, vol. 31, pp. 1043-1049, Jul. 2009.
  28. R. Praveenkumar, B. Kim, E. Choi, K. Lee, J. Park, J. Lee, Y. Lee, Y. Oh, “Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas”, Bioresource Technology, vol. 171, pp. 500-505, Nov. 2014.
  29. R. Praveenkumar, K. Shameera, G. Mahalakshmi, M. Akbarsha, N. Thajuddin, “Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: Evaluation for biodiesel production”, Biomass and Bioenergy, vol. 37, pp. 60-66, Feb. 2012.
  30. P. Zhao, X. Yu, J. Li, X. Tang, Z. Huang, “Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10”, Journal of Bioscience and Bioengineering, vol. 118, pp. 72–77, Jul. 2014.
  31. L. Gouveia and A.C. Oliveira, “Microalgae as a raw material for biofuels production”, Journal of Industrial Microbiology & Biotechnology, vol. 36, pp. 269-274, Feb. 2009.
  32. M. Takagi and K., T. Yoshida, “Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells”, Journal of Bioscience and Bioengineering, vol. 101, pp. 223-226, Mar. 2006.
  33. G. Petkov and G. Garcia, “Which are fatty acids of the green alga Chlorella?”, Biochemical Systematics and Ecology, vol. 35, pp. 281-285, May. 2007.
  34. D. Leung, W. Xuan and M. Leung, “A review on biodiesel production using catalyzed transesterification”, Applied Energy, vol. 87, pp. 1083–1095, Apr. 2010.

Descargas

Los datos de descargas todavía no están disponibles.