Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Estudio comparativo de flujo de fluido a través de una placa de orificio usando las ecuaciones de Stokes y de Navier-Stokes

Resumen

Presenta los resultados de la comparación entre las ecuaciones de Stokes y de Navier-Stokes para la simulación del flujo de agua líquida, a condiciones atmosféricas, a través de una placa orificio concéntrica. A partir de los datos experimentales que fueron tomados en el banco de fluidos, se evaluaron las simulaciones de ambas ecuaciones, usando el software libre Freefem++cs, que se basa en el método de los elementos finitos, las variables evaluadas son velocidad y presión en un intervalo de tiempo. Al analizar los resultados obtenidos con las simulaciones y comparar con los datos experimentales se encontró que las ecuaciones de Navier-Stokes representan mejor el sistema que la ecuación de Stokes.

Palabras clave

modelo matemático, ecuaciones de Stokes y Navier-Stokes, placa de orificio, simulación

PDF HTML

Citas

  1. J. M. Cimbala and Y. A. Cengel, “Flujo en Tuberías”, Mecánica de Fluidos: Fundamentos y Aplicaciones. V.C. Olguin. Mexico: McGraw Hill, pp. 321-398, 2006.
  2. R. L. Mott, “Medición del Flujo”, Mecánica de Fluidos. J. E. Brito. Mexico: Pearson Education, pp. 473-499, 2006.
  3. B. Manshoor, F. C. Nicolleau and S. B. Beck, “The fractal flow conditioner for orifIce plate flow meters”, Flow Measurement and Instrumentation, vol. 22 (3), pp. 208-214, Jun. 2011. DOI: http://dx.doi.org/10.1016/j.flowmeasinst.2011.02.003. DOI: https://doi.org/10.1016/j.flowmeasinst.2011.02.003
  4. J. Banks, J. S. Carson, B. L. Nelson and D. M. Nicol, Discrete-event system simulation. USA: Prentice Hall, 2009.
  5. F. Hecht, O. Piro and A. Le Hyaric, “Freefem++,” 2014. [Online]. Disponible: http://www.freefem.org/ff++/ftp/freefem++doc.pdf.
  6. R. Lewandowski, “The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity”, Nonlinear Analysis, Theory, Methods & Applications, vol. 28 (2), pp. 393-417, Jan. 1997. DOI: http://dx.doi.org/10.1016/0362-546X(95)00149-P. DOI: https://doi.org/10.1016/0362-546X(95)00149-P
  7. M. M. Rhaman and K. M. Helal, “Numerical Simulations of unsteady Navier-Stokes Equations for incompressionable newtonian fluid using FreeFem++ based on Finite Element Method”, Annals of Pure and Applied Mathematics, vol. 6 (1), pp. 70-84, May. 2014.
  8. C. L. Felter, J. H. Walther and C. Henriksen, “Moving least squares simulation of free surface flows”, Computers & Fluids, vol. 91, pp. 47-56, Mar. 2014. DOI: http://dx.doi.org/10.1016/j.compfluid.2013.12.006. DOI: https://doi.org/10.1016/j.compfluid.2013.12.006
  9. Z. Li, K. Ito and M. C. Lai, “An augmented approach for Stokes equations with a discontinuous viscosity and singular forces”, Computers & Fluids, vol. 36 (3), pp. 622-635, Mar. 2007. DOI: http://dx.doi.org/10.1016/j.compfluid.2006.03.003. DOI: https://doi.org/10.1016/j.compfluid.2006.03.003
  10. T. Geenen, M. ur Rehman, S. P. MacLachlan et al., “Scalable robust solvers for unstructured FE geodynamic modeling applications: Solving the Stokes equation for models with large localized viscosity contrasts”, Geochemistry, Geophysics, Geosystems. An Electronical Journal of the earth sciences, vol. 10 (9), pp. 1-12, Sep. 2009. DOI: https://doi.org/10.1029/2009GC002526
  11. A. Mojtabi and M. O. Deville, “One-dimensional linear advection–diffusion equation: Analytical and finite element solutions”, Computers & Fluids, vol. 107, pp. 189-195, Jan. 2015. DOI: http://dx.doi.org/10.1016/j.compfluid.2014.11.006. DOI: https://doi.org/10.1016/j.compfluid.2014.11.006
  12. J. Volker, K. Kaiser and J. Novo, “Finite Element Methods for the Incompressible Stokes Equations with Variable Viscosity”, Zeitschrift fûr Angewandte Mathematik und Mechanik, vol. 96 (2), pp. 205-216, 2016. DOI: http://dx.doi.org/10.1002/zamm.201400291. DOI: https://doi.org/10.1002/zamm.201400291
  13. P. Gómez-Palacio, “Solución de la ecuación de Stokes”, Revista Universidad EAFIT, vol. 46, pp. 90-102, 2010.
  14. E. Engineering, Análisis y Simulación de la dinámica de fluidos computacionales-CFD a fluidos internos [Online]. Disponible: http://evaeng.com/analisis-y-simulacion-de-ladinamica-de-los-fluidos-computacionales-cfda-flujos-internos/.
  15. C. M. Institute, Navier-Stokes equation [Online]. Disponible: http://www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation.
  16. J. L. Vázquez, Fundamentos matemáticos de la mecánica de fluidos. Madrid: Universidad Autónoma de Madrid, 2003.
  17. P. K. Kundu, I. M. Cohen and D. R. Dowling, Fluids Mechanics. Elsevier, 2012.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

También puede {advancedSearchLink} para este artículo.