Desarrollo de un controlador PID por sintonización difusa aplicado a un sistema rotacional (péndulo invertido)
Resumen
El péndulo invertido ha sido un sistema de gran interés en el área del control y la academia, el modelado de este sistema presenta muchas dificultades asociadas a problemas de control en el mundo real. En este trabajo se expone una manera diferente de desarrollar una estrategia de control del sistema en mención, partiendo del diseño e implementación del sistema péndulo rotacional, pasando por su modelado utilizando estrategias de identificación de sistemas basados en métodos de inteligencia artificial, específicamente redes neuronales (N-FIR), y, finalmente, realizando la etapa de control por sintonización difusa a diferentes condiciones físicas provocadas en el péndulo (cambio de longitud y/o masa), siendo validados sobre el sistema real desarrollado, con buenos resultados.
Palabras clave
Inteligencia artificial, Péndulo invertido, Control inteligente, Identificación de sistemas, Sintonización difusa
Citas
- R. M. Brisilla, V. Sankaranarayanan “Nonlinear control of mobile inverted pendulum”. Robotics and Autonomous Systems, Vol. 70, pp. 145-155, August 2015.
- F. Dai, X. Gao, S. Jiang, W. Guo, “A twowheeled inverted pendulum robot with friction compensation”, Mechatronics, Available online 4 July 2015.
- M. Olivares, P. Albertos, “Linear control of the flywheel inverted pendulum”, ISA Transactions, Vol. 53, pp. 1396-1403, 2014.
- Z. Sun, N. Wang, Y. Bi, “Type-1/type-2 fuzzy logic systems optimization with RNA genetic algorithm for double inverted pendulum”, Applied Mathematical Modelling, Vol. 39, pp. 70-85, January 2015.
- A. M. El-Nagar, M. El-Bardini, N. M. El-Rabaie, “Intelligent control for nonlinear inverted pendulum based on interval type-2 fuzzy PD controller”, Alexandria Engineering Journal, Vol. 53, pp. 23-32, 2014.
- O. Gualdrón, C. Peña, C. Maldonado, “Identificación automática de cilindros de almacenamiento de gas utilizando redes neuronales tipo hop field”, Revista Ingeniería de la Universidad Industrial de Santander, Vol. 11-1, pp. 101-109, 2012.
- A. Guerrero, O. Gualdrón, “Identificación de un modelo dinámico del generador de vapor de la caldera en la planta Termotasajero Colgener”, Revista Colombiana de Tecnologías de Avanzada, Vol. 21, pp. 52-59, 2013.
- M. Romero Ugalde, J.C Carmona, J. Reyes, V. Alvarado, J. Mantilla, “Computational cost improvement of neural network models in black box nonlinear system identification”, Neurocomputing, Vol. 166, pp. 96-108, 2015.
- E. Gómez, “Aplicación del modelo neurodifuso ANFIS vs. Redes Neuronales, al problema predictivo de caudales medios mensuales del río Bogotá en Villapinzón”, Revista Tecnura, Vol. 14, pp. 18-29, 2010.
- P. Szymczyk,“Z-transform artificial neural networks”, Neurocomputing, Vol. 168, pp. 1207-1210, 2015.
- J. S. Almeida, “Predictive non-linear modeling of complex data by artificial neural networks”, Current Opinion in Biotechnology, Vol. 13, pp. 72-76, February 2002.
- E. Caicedo, J.A. López, M.A. Muñoz, Control Inteligente. Editorial Universidad del Valle,2009.
- Z. Sun, R. Xing, C. Zhao, W. Huang, “Fuzzy auto-tuning PID control of multiple joint robot driven by ultrasonic motors”, Ultrasonics, Vol. 46, pp. 303-312, 2007.
- I. Anastasios, A. Dounis, P. Kofinas, G. Papadakis, C. Alafodimos, “A direct adaptive neural control for maximum power point tracking of photovoltaic system”, Solar Energy, Vol. 115, pp. 145-165, 2015.
- X. Ruan, M. Ding, D. Gong, J. Qiao, “Online adaptive control for inverted pendulum balancing based on feedback-error-learning”, Neurocomputing, Vol. 70, pp. 770-776, 2007.