Análisis de transferencia térmica de tubos con superficies extendidas con diseño fractal
Resumen
Los intercambiadores de calor están conformados por tubos con superficies extendidas, con el propósito de mejorar la transferencia de calor entre dos medios, que pueden ser un sólido y un líquido en movimiento. En el presente trabajo se expone el diseño que se llevó a cabo de un tubo de superficie extendida con geometría fractal, correspondiente al copo de koch y la curva de Cesaro, con la herramienta computacional CAD, para luego realizar el análisis por elementos finitos CAE y verificar el comportamiento térmico del tubo diseñado. Se logró obtener como resultado reducir el tiempo de transferencia de calor y aumentar el flujo de calor en el sistema del modo siguiente: para tubo liso, 250 W/m2; para superficie de Koch, 500 W/m2; para seis aletas, 1450 W/m2, y, finalmente, para curva de Cesaro, 3600 W/m2. Todo ello, permitió evidenciar los límites del diseño y las ventajas que pueden llegar a tener respecto a su implementación en maquinarias como condensadores, intercambiadores de calor y calderas.
Palabras clave
calderas, copo de Koch, curva de Cesaro, diseño fractal, elementos finitos, transferencia de calor, tubos de superficie extendida
Citas
- R. Senthilkumar, S. Prabhu, and M. Cheralathan, “Experimental investigation on carbon nano tubes coated brass rectangular extended surfaces,” Applied Thermal Engineering, vol. 50(1), pp. 1361-1368, Jan. 2013. DOI: DOI: http://doi.org/10.1016/j.applthermaleng.2012.05.040. DOI: https://doi.org/10.1016/j.applthermaleng.2012.05.040
- S. W. Chang, W. L. Cai, and R. S. Syu, “Heat transfer and pressure drop measurements for tubes fitted with twin and four twisted fins on rod,” Experimental Thermal and Fluid Science, vol. 74, pp. 220-234, Jun. 2016. DOI: DOI: http://doi.org/10.1016/j.expthermflusci.2016.01.001. DOI: https://doi.org/10.1016/j.expthermflusci.2016.01.001
- B. Niezgoda – Zelasko, and J. Zelasko, “Refrigerant boiling at low heat flux in vertical tubes with heat transfer enhancing fittings,” International Journal of Refrigeration, vol. 54, pp. 151-169, Jun. 2015. DOI: http://doi.org/10.1016/j.ijrefrig.2015.03.007. DOI: https://doi.org/10.1016/j.ijrefrig.2015.03.007
- E. Gkanas, and Makridis, “Effective thermal management of a cylindrical MgH2 tank including thermal coupling with an operating SOFC and the usage of extended surfaces during the dehydrogenation process,” International Journal of Hydrogen Energy, vol. 41(13), pp. 5693-5708, Apr. 2016. DOI: http://doi.org/10.1016/j.ijhydene.2016.01.165. DOI: https://doi.org/10.1016/j.ijhydene.2016.01.165
- H. W. Carpenter, and R. G. Reid, “The response of layered anisotropic tubes to centrifugal loading,” Composite Structures, vol. 139, pp. 141-150, Apr. 2016. DOI: http://doi.org/10.1016/j.compstruct.2015.11.071. DOI: https://doi.org/10.1016/j.compstruct.2015.11.071
- K. Yang, S. Xu, J. Shen, S. Zhou, and Y. M. Xie, “Energy absorption of thin-walled tubes with pre-folded origami patterns: Numerical simulation and experimental verification,” Thin-Walled Structures, vol. 103, pp. 33-44, Jun. 2016. DOI: http://doi.org/10.1016/j.tws.2016.02.007. DOI: https://doi.org/10.1016/j.tws.2016.02.007
- R. Romero-Méndez, P. Lara-Vázquez, F. Oviedo-Tolentino, H. M. Duran-Garcia, F. G. Pérez-Gutiérrez, and A. Pacheco-Vega, “Use of Artificial Neural Networks for Prediction of the Convective Heat Transfer Coefficient in Evaporative Mini-Tubes,” Ingeniería, Investigación y Tecnología, vol. 17(1), pp. 23-34, Jan. 2016. DOI: http://doi.org/10.1016/j.riit.2016.01.003. DOI: https://doi.org/10.1016/j.riit.2016.01.003
- S. Jedari Salami, “Extended high order sandwich panel theory for bending analysis of sandwich beams with carbon nanotube reinforced face sheets,” Physica E: Low-dimensional Systems and Nanostructures, vol. 76, pp. 187-197, Feb. 2016. DOI: http://doi.org/10.1016/j.physe.2015.10.015. DOI: https://doi.org/10.1016/j.physe.2015.10.015
- S. Rimza, K. Satpathy, S. Khirwadkar, and K. Velusamy, “Optimal design of divertor heat sink with different geometric configurations of sectorial extended surfaces,” Fusion Engineering and Design, vol. 100, pp. 581-595, Nov. 2015. DOI: http://doi.org/10.1016/j.fusengdes.2015.08.008. DOI: https://doi.org/10.1016/j.fusengdes.2015.08.008
- B. Anoop, C. Balaji, Velusamu, and K. Velusamy, “A characteristic correlation for heat transfer over serrated finned tubes,” Annals of Nuclear Energy, vol. 85, pp. 1052-1065, Nov. 2015. DOI: http://doi.org/10.1016/j.anucene.2015.07.025. DOI: https://doi.org/10.1016/j.anucene.2015.07.025
- P. A. Di Maio, P. Arena, G. Bongiovi, P. Chiovaro, A. del Nevo, and R. Forte, “Optimization of the breeder zone cooling tubes of the DEMO Water-Cooled Lithium Lead breeding blanket,” Fusion Engineering and Design, vol. 109-111(A), pp. 227-231, Nov. 2016. DOI: http://doi.org/10.1016/j.fusengdes.2016.03.021. DOI: https://doi.org/10.1016/j.fusengdes.2016.03.021
- S. Mirfendereski, A. Abbassi, and M. Saffar - Avval, “Experimental and numerical investigation of nanofluid heat transfer in helically coiled tubes at constant wall heat flux,” Advanced Powder Technology, vol. 26(5), pp. 1483-1494, Sep. 2015. DOI: http://doi.org/10.1016/j.apt.2015.08.006. DOI: https://doi.org/10.1016/j.apt.2015.08.006
- D. J. Kukulka, and R. Smith, “Thermal-hydraulic performance of Vipertex 1EHT enhanced heat transfer tubes,” Applied Thermal Engineering, vol. 61(1), pp. 60-66, Oct. 2013. DOI: http://doi.org/10.1016/j.applthermaleng.2012.12.037. DOI: https://doi.org/10.1016/j.applthermaleng.2012.12.037
- J. Yan, Q. Bi, G. Zhu, L. Cai, Q. Yuan, and H. Lv, “Critical heat flux of highly subcooled water flow boiling in circular tubes with and without internal twisted tapes under high mass fluxes,” International Journal of Heat and Mass Transfer, vol. 95, pp. 606-619, Apr. 2016. DOI: http://doi.org/10.1016/j.ijheatmasstransfer.2015.12.024. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.024
- J. Yan, Q. Bi, L. Cai, G. Zhu, and Q. Yuan, “Subcooled flow boiling heat transfer of water in circular tubes with twisted-tape inserts under high heat fluxes,” Experimental Thermal and Fluid Science, vol. 68, pp. 11-21, Nov. 2015. DOI: http://doi.org/10.1016/j.expthermflusci.2015.04.003. DOI: https://doi.org/10.1016/j.expthermflusci.2015.04.003
- B. Li, X. Han, Z. Wan, X. Wang, and Y. Tang, “Influence of ultrasound on heat transfer of copper tubes with different surface characteristics in sub-cooled boiling,” Applied Thermal Engineering, vol. 92, pp. 93-103, Jan. 2016. DOI: http://doi.org/10.1016/j.applthermaleng.2015.09.069. DOI: https://doi.org/10.1016/j.applthermaleng.2015.09.069
- V. Garcia-Morales, “Fractal surfaces from simple arithmetic operations,” Physica A: Statistical Mechanics and its Applications, vol. 447, pp. 535-544, Apr. 2016. DOI: http://doi.org/10.1016/j.physa.2015.12.028. DOI: https://doi.org/10.1016/j.physa.2015.12.028
- I. M. Rian, and S. Asayama, “Computational Design of a nature-inspired architectural structure using the concepts of self-similar and random fractals,” Automation in Construction, vol. 66, pp. 43-58, Jun. 2016. DOI: http://doi.org/10.1016/j.autcon.2016.03.010. DOI: https://doi.org/10.1016/j.autcon.2016.03.010
- H. Khezrzadeh, “Overall properties of particulate composites with fractal distribution of fibers,” Mechanics of Materials, vol. 96, pp. 1-11, May. 2016. DOI: http://doi.org/10.1016/j.mechmat.2016.01.014. DOI: https://doi.org/10.1016/j.mechmat.2016.01.014
- G. Pia, L. Casnedi, R. Ricciu, L. A. Besalduch, O. Cocco, A. Murru, Paola Meloni, and U. Sanna, “Thermal properties of porous stones in cultural heritage: Experimental findings and predictions using an intermingled fractal units model,” Energy and Buildings, vol. 118, pp. 232-239, Apr. 2016. DOI: http://doi.org/10.1016/j.enbuild.2016.03.011. DOI: https://doi.org/10.1016/j.enbuild.2016.03.011
- N. Nagarani, K. Mayilsamy, A. Murugesan, and G. Sathesh Kumar, “Review of utilization of extended surfaces in heat transfer problems,” Renewable and Sustainable Energy Reviews, vol. 29, pp. 604-613, Jan. 2014. DOI: http://doi.org/10.1016/j.rser.2013.08.068. DOI: https://doi.org/10.1016/j.rser.2013.08.068
- M. L. Lapidus, and R. G. Niemeyer, “Towards the Koch Snowflake Fractal Billard: Computer Experiments and Mathematical Conjectures,” Contemporary Mathematics, vol. 517, pp. 231-265, Jan. 2010. DOI: http://doi.org/10.1090/conm/517/1014. DOI: https://doi.org/10.1090/conm/517/10144