Skip to main navigation menu Skip to main content Skip to site footer

Ecofisiología del cultivo de la papa (Solanum tuberosum L.)

Abstract

La papa es uno de los cinco productos agrícolas de mayor consumo humano en el mundo, su planta es una dicotiledónea perteneciente a la familia de las Solanáceas, y se produce en regiones de latitudes entre los 47ºS y los 65ºN. El 50% del área global del cultivo de papa está localizado por encima de los 1.000 msnm, y la zona óptima de producción para  las variedades comerciales de Solanum tuberosum está en altitudes ubicadas entre los 2.500 y los 3.000 msnm. En cuanto a radiación, niveles por encima de los 1.200 µmoles m-2
 s-1  generan efectos positivos en la distribución de materia seca hacia los tubérculos. El fotoperiodo corto (10 horas luz) acelera el inicio de la tuberización en la mayoría de variedades. El cultivo de papa se adapta a climas fríos tropicales con temperaturas medias entre 15 y 18ºC, en el suelo y en el aire.  La utilización de recursos hídricos y minerales del suelo y de recursos de la atmósfera, como CO2 , O2 y radiación fotosintéticamente activa (RFA), son factores limitantes para el crecimiento y desarrollo de la planta de papa.

Palabras clave adicionales: crecimiento, factores ambientales, productividad, metabolismo, tuberización
PDF (Español)

References

  1. Alisdair, R.; L. Willmitzer y R. Trethewey. 2002. Sucrose to starch: a transition in molecular plant physiology. Trends Plant Sci. 7(1), 35-41.
  2. Alisdair, R.F. y L. Willmitzer. 2001. Molecular and biochemical triggers of potato tuber development. Plant. Physiol. 127, 1459-1465.
  3. Allemann, J. y P. Hammes. 2006. Effect of photoperiod on tuberization in the Livingstone potato (Plectranthus esculentus N.E.Br. Lamiaceae). Field Crops Res. 98, 76-81.
  4. Allen, E. 1978. The potato crop. The scientific basis for improvement. Second edition. Harris and Hall, London.
  5. Allen, E.J. y R. Scott. 1980. An analysis of growth of the potato crop. J. Agric. Sci. 94, 583-606.
  6. Azcón-Bieto, J. y M. Talón. 2008. Fundamentos de fisiología vegetal. Second edition. Interamericana McGraw-Hill, Madrid.
  7. Bao-Zhong, Y.; S. Nishiyama; R. Alisdair; L. Willmitzer y R. Trethewey. 2002. Sucrose to starch: a transition in molecular plant physiology. Trends Plant Sci. 7(1), 35-41.
  8. Batutis, E.J. y E. Ewing. 1982. Far-red reversal of red light effect during long night induction of potato (S. tuberosum L.) tuberization. Plant Physiol. 69, 672-674.
  9. Brown, C.R. 1993. Origin and history of the potato. Amer. Pot. J. 70, 63-373.
  10. Burke, J. 2003. Growing the potato crop. Teagasc. En: Irish Agriculture and Food Development Authority. 3p., http://www.teagasc.ie/publications/2003/conferences /pota to/paper02.htm; consulta: septiembre de 2010.
  11. Clarkson, D. y J. Hanson. 1980. The mineral nutrition of higher plants. Annu. Rev. Plant Physiol. 31, 239-298.
  12. Casanova, M.A.; G. Hoffmann-Thoma; A.A. Schrier; A. Fangmeier; H. Jager y A. Bel. 2005. Increase of photosynthesis and starch in pot at o under elevated CO2 is dependent on leaf age. J. Plant Physiol. 162, 429-438.
  13. Casierra-Posada, F. y O. E. Aguilar-Avendaño. 2008. Respuestas fisiológicas y morfológicas de plant as de mora (Rubus sp.) sometidas a estrés por viento inducido. Rev. Colomb. Cienc. Hortic. 2(1), 43-53.
  14. Conn, J. y V. Cochran. 2006. Response of pot at o (S. tuberosum L.) t o elevated atmospheric CO2
  15. in the North American Subarctic. Agr. Ecosyst . Environ. 112, 49-57.
  16. Dalla Costa, L.; G. Vedove; G. Gianquinto; R. Giovanardi y A. Peressotti. 1997. Yield, water use efficiency and nitrogen uptake in potato: influence of drought stress. Pot . Res. 40, 19-34.
  17. Darw ish, T. M .; T. Atallah; S. Hajhasan y A. H aidar. 2006. Nitrogen and w at er use efficiency of fertigated processing potato. Agr. Water Manage. 85, 95-104.
  18. Donnelly, A.; T. Law son; J. Craigon; C. Black; J. Colls y G. Landon. 2001. Effect s of elevated CO2 and O3 on tuber quality in potato (S. tuberosum L.). Agr. Ecosyst . Environ. 87, 273–285.
  19. Drake, B.G.; M .A. González-M eler y S.P. Long. 1997. More efficient plants: a consequence of rising atmospheric CO2. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 609-639.
  20. Dw elle, R.B. 1990. Source/ sink relationship during tuber growth. Amer. Pot . J. 67, 828-833.
  21. Dwelle, R.B.; P.J. Hurley y J.J. Paveck. 1983. Photosynthesis and stomatal conductance of potato clones. Plant Physiol. 72, 172-176.
  22. Estrada, R.N . 2000. La biodiversidad en el mejoramiento genético de la papa. Proinpa, Cip y Cid. La Paz, Bolivia.
  23. Ewing, E. y P. Wareing. 1978. Shoot , stolon and tuber formation on potato (S. tuberosum L.) cutt ings response to photoperiod. Plant Physiol. 61, 348-353.
  24. Farrar, J.F. y M.L. Williams. 1991. The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source sink relations and respiration. Plant Cell Environ. 14, 819-830.
  25. FAO. 2009. FAO statistics. En: http://www.fao.org, 4 p.; consulta: septiembre de 2010.
  26. Finnan, J.; A. Donnelly; J. Burke y M. Jones. 2002. The effects of elevated concentrations of carbon dioxide and ozone on potato (S. tuberosum L.) yield. Agr. Ecosyst. Environ. 88, 11-22.
  27. Fulai, L.; A. Shahnazari; M. Andersen; S. Jacobsen y C. Jensen. 2006. Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Scientia Hort. 109,113-117.
  28. Gawronska, H.; R.B. Dwelle; J.J. Pavek y P. Rowe. 1984. Partitioning of photoassimilates by for potato clones. Crop Sci. 24, 1031-1036.
  29. Haverkort, A.J. 1990. Ecology of potato cropping systems in relation to latitude and altitude. Agr. Syst. 32, 251-272.
  30. Haverkort, A.J.; M. Van de Waart y K.B. A. Bodlaeader. 1990. The effect of early drought stress on numbers of tubers and stolons of potato in controlled and field conditions. Pot. Res. 33, 89-96.
  31. Hawkes, J.G. 1997. A database for wild and cultivated potatoes. Euphytica 93, 155-161.
  32. Hay, R. y A. Walker. 1989. An introduction to the physiology of crop yield. Second edition. Chapingo, México.
  33. Hernández, G R. 1989. Nutrición mineral. Facultad de Ciencias Forestales, ULA, Mérida.
  34. Hijmans, R. 2001. Global distribution of the potato crop. Amer. J. Pot. Res. 78(6), 403-412.
  35. Högy, P. y A. Fangmeier. 2009. Atmospheric CO2 enrichment affects potatoes: 1. Aboveground biomass production and tuber yield. Eur. J. Agron. 30, 78-84.
  36. Jackson, S.D. 1999. M ult iple signaling pathways control tuber induction in potato. Plant Physiol. 119, 1-8.
  37. Jackson, S. y S. Prat . 1996. Control of tuberization in potato by gibberellins and phytochrome B. Physiol. Plant. 98, 407-412.
  38. Karafyllidis, D.I.; N . Stavropoulos y D. Georgakis. 1996. The effect of water stress on the yielding capacity of potato crops and subsequent performance of seed tubers. Potato Res. 39, 153- 163.
  39. Kimball, B.A. 1983. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron. J. 75, 779-782.
  40. Kooman, P. L.; M . Fahem; P. Tegera y A. Haverkort . 1996. Effects of climate on different potato genotypes 2. Dry matter allocation and duration of the growth cycle. Eur. J. Agron. 5, 207-217.
  41. Ku, S.B.; G. Edwards y C. Tanner. 1977. Effects of light, carbon dioxide, and temperature on photosynthesis, oxygen inhibition of photosynthesis, and transpiration in S. tuberosum. Plant Physiol. 59, 868-872.
  42. Lafta, A.M y J. Lorenzen. 1995. Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiol. 109, 637- 643.
  43. Larcher, W. 2003. Physiological plant ecology. Ecophysiology and stress physiology of functional groups. Forth edition. Springer Verlag, Berlín.
  44. Lorenzen, J. y E. Ewing. 1992. Starch accumulation in leaves of potato (S. tuberosum L.) during the first 18 days of photoperiod treatment. Ann. Bot. 69, 481–485.
  45. Lujan, L. 1991. M orfología, est ruct ura y morfología de la planta de papa. Papa 2, 23-29.
  46. Lujan, L. 1994. La ecología de la papa. Revist a Papa 12, 1-36.
  47. Mackerron, D.K y P.D. Waister. 1983. Light interception and dry matter accumulation in potato cultivars of contrasting habit. Potatoes 26, 88-89.
  48. Marschner, H. 1995. Mineral nutrition of higher plants. Academic Press. Second edition. New York, NY.
  49. Meier, U. 2001. Estadios de las plantas mono y dicotiledóneas. 2a. ed. Centro Federal de Investigaciones Biológicas para Agricultura y Silvicultura, Braunschweig, Alemania.
  50. Menzel, C.M. 1985. The control of storage organ formation in potato and other species. Field Crops 38, 527-537.
  51. Ministerio de Agricultura y Desarrollo Rural. 2009. Secretaria Técnica Consejo Nacional de la Papa.
  52. Observatorio Agrocadenas Colombia: cuarto informe de coyuntura papa. En: http://www.agrocadenas.gov.co/documentos/Informes_coyuntura.htm#C5; 8 p.; consulta: febrero de 2010.
  53. Nosberger, J. y E. Humpries. 1965. The influence of removing tuber on dry matter production and net assimilation rate of potato plants. Ann. Bot. 29, 579-588.
  54. Ortiz, E. y H. Hernández. 1986. Análisis de varianza fenotípica (densidad de población y niveles de fertilización) de los rendimientos y sus componentes en S. tuberosum Lin. Cultivos Tropicales 8(2), 65-71.
  55. Pavlista, A. D. 2002. Environmental effects. Nebraska Potato Eyes 14, 1-4.
  56. Piikki, K.; V. Vorne; K. Ojanpera y H. Pleijel. 2006. Impact of elevated O3 and CO2 exposure on potato (S. tuberosum L. cv. Bintje) tuber macronutrients (N, P, K, Mg, Ca). Agr. Ecosyst. Environ. 118, 55-64.
  57. Ribó, M. 2004. Balance de macronutrientes y material orgánica en el suelo de agrosistemas hortícolas con manejo integrado ecológico. Universidad de Valencia. Servicio de Publicaciones, Valencia, España.
  58. Riesmeier, J.W.; L. Willmitzer y W.B. Frommer. 1994. Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. Embo J. 13, 1-17.
  59. Sarquis, J.I.; H. Gonzalez e I. Bernal-Lugo. 1996. Response of two potato clones (S. tuberosum L.) to contrasting temperature regimes in the field. Amer. Potato Res. 73, 285-300.
  60. Schapendonk, A.; V. Oijen; P. Dijkstra; C. Pot; W. Jordi y G.M. Stoopen. 2000. Effects of elevated CO2 concentration on photosynthetic acclimation and productivity of two potato cultivars grown in open-top chambers. Aust. J. Plant Physiol. 27, 1119-1130.
  61. Sermet, O.; H.M. Caliskan y O. Caliska. 2005. Different irrigation methods and water stress effects on potato yield and yield components. Agric. Water Manage. 73, 73-86.
  62. Snyder, E. 1989. Interactive effects of temperature, photoperiod and cultivar on tuberization of potato cuttings. HortScience 24, 336-338.
  63. Sonnewald, W. 2001. Control of potato tuber sprouting. Trends Plant Sci. 6(8), 333-335.
  64. Spooner, D.; K. McLean; G. Ramsay; R. Waugh y G. Bryan. 2005. A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc. Natl. Acad. Sci. 102(41), 14694–14699.
  65. Sukumaran, N.P. y C.D. Weiser. 1972. Freezing injury in potato leaves. Plant Physiol. 50, 564-567.
  66. Taiz, L. y E. Zeiger. 2006. Plant physiology. Forth edition. Sinauer Associates Inc. Publ., Massachusetts, MA.
  67. Tekalign, T. y P.S. Hammes. 2005. Growth and productivity of potato as influenced by cultivar and reproductive growth II. Growth analysis, tuber yield and quality. Scientia Hort. 105, 29-44.
  68. Thornton, M.K.; N.Y. Malik y R. Dwelle. 1996. Relationship between leaf gas exchange characteristics and productivity of potato clones grown at different temperatures. Amer. Potato J. 73, 63-77.
  69. Tourneux, Ch.; A. Devaux; M.R. Camacho ; P. Mamani y J.F. Ledent 2003a. Effects of water shortage on six potato genotypes in the highlands of Bolivia (II): water relations, physiological parameters. Agronomie 23, 180-190.
  70. Tourneux, Ch.; A. Devaux; M.R. Camacho ; P. Mamani y J.F. Ledent. 2003b. Effects of water shortage on six potato genotypes in the highlands of Bolivia (I): morphological parameters, growth and yield. Agronomie 23, 169-179.
  71. Ulrich, A. 1993. Nutrition deficiencies and toxicities in crop plants. William F. Bennett, Minnesota, MN.
  72. Van-Delden, A.; A. Pecio y A. Haverkort 2000. Temperature response of early foliar expansion of potato and wheat. Ann. Bot. 86, 355-369.
  73. Vreugdenhil, D.; J. Bradshaw; C. Gebhardt; F. Govers; D. MacKerron; A. Taylor y A. Heather. 2007. Potato biology and biotechnology: Advances and perspectives. Elsevier, Amsterdam.
  74. Walworth, J.L y J.E. Muniz. 1993. A compendium of tissue nutrient concentrations for field grown potatoes. Amer. Pot. J. 70, 579-597.
  75. Waddell, J.T.; S. Gupta; J. Moncrief; H. Rosen y D. Steele. 2000. Irrigation and nitrogen-management impacts on nitrate leaching under potato. J. Environ. Qual. 29, 251-261.
  76. Walker, T.S.; P.E. Schmiediche y R.J. Hijmans. 1999. World trends and patterns in the potato crop: An economic and geographic survey. Pot. Res. 42, 241-264.
  77. Westermann, D.T. 2005. Nutritional Requirements of Potatoes. Amer. J. Pot. Res. 82, 301-307.
  78. Wheeler, R.M. y T.W. Tibbits. 1986. Growth and tuberization of potato (Solanum tuberosum L.) under continuos light. Plant Phys. 80, 801-804.
  79. Wright, A.J. y J. Brooks. 2002. Effect of windbreaks on potato production for the Atherton Tablelands of North Queensland. Aust. J. Exp. Agric. 42, 797-807.
  80. Wu, J.; D. Wang y M. Bauer. 2007. Assessing broadband vegetation indices and Quick Bird data in estimating leaf area index of corn and potato canopies. Field Crops Res. 102, 33-42.
  81. Yuan, F. y W. Bland. 2004. Light and temperature modulated expolinear growth model for potato (Solanum tuberosum L.). Agric. For. Meteor. 121, 141-151.
  82. Yuan, B.Z.; S. Nishiyama y Y. Kang. 2003. Effects of different irrigation regimes on the growth and yield of drip irrigated potato. Agric. Water Manage. 63, 153-167.

Downloads

Download data is not yet available.