Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Modelos matemáticos para la descripción del crecimiento del fruto de duraznero (Prunus persica [L.] Batsch.) cv. Dorado

Peach fruits cv. Dorado. Photo: E..H. Pinzón-Sandoval

Resumen

Dentro de las especies caducifolias, el duraznero (Prunus persica [L.] Batsch.), es uno de los frutales de gran importancia en las zonas de trópico alto; sin embargo, se desconoce el comportamiento del crecimiento del fruto en las diferentes variedades cultivadas, por esto se asume que todos presentan ajuste a curvas doble sigmoideas, aun cuando se reportan que en muchos de los cultivares de duraznero el crecimiento pueden presentar curvas de tipo sigmoideo, esto ocasiona mala interpretación de la información impidiendo la toma de decisiones acertadas en cuanto al manejo. Se indica que los modelos de regresión no lineal son los que mejor describen las curvas de crecimiento, en los que el proceso de estimación de los parámetros se puede obtener minimizando la suma de cuadrados de los errores; dentro de estos, el modelo logístico se reporta como una de las mejores opciones para representar el crecimiento del fruto de forma acertada. Por lo anterior, el objetivo de la investigación fue determinar la eficiencia de modelos matemáticos para la descripción del crecimiento de frutos de P. persica cv. Dorado, cultivados bajo condiciones del municipio de Tuta-Boyacá. Se encontró que el modelo Logístico resultó el más adecuado en la descripción de las curvas de crecimiento basados en el peso fresco o seco, mientras que el modelo Gompertz fue el más adecuado para la descripción del diámetro polar y ecuatorial del fruto de la variedad Dorado, ya que a partir de estos se generaron parámetros con unas interpretaciones prácticas y que representan de forma adecuada el proceso biológico.

Palabras clave

modelo logístico, modelo no lineal, Curva sigmoidea, modelo Gompertz, modelo Weibull

PDF (English)

Citas

  1. Almanza, P., H. Balaguera, and L. Africano. 2015. Fisiología y bioquímica de la maduración del fruto de durazno [Prunus persica ( L.) Batsch]. Una Revisión. Rev. Colomb. Cienc. Hortic. 9(1), 161-172. Doi: 10.17584/rcch.2015v9i1.3754
  2. Archontoulis, S.V. and F.E. Miguez. 2015. Nonlinear regression models and applications in agricultural research. Agron. J. 107(2), 786-798. Doi: 10.2134/agronj2012.0506
  3. Bertin, N. 2005. Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division, cell expansion and DNA endoreduplication. Ann. Bot. 95(3), 439-447. Doi: 10.1093/aob/mci042
  4. Campos, T. 2013. Especies y variedades de hoja caduca en Colombia. pp. 47-67. In: Miranda, D., G. Fischer, and C. Carranza (eds.). Los frutales caducifolios en colombia Situación actual, sistemas de cultivo y plan de desarrollo. Sociedad Colombiana de Ciencias Hortícolas, Bogotá.
  5. Carranza, C., O. Lanchero, D. Miranda, and B. Chaves. 2009. Growth analysis of ‘Batavia’ lettuce (Lactuca sativa L.) cultivated in a saline soil of the Bogota Plateau. Agron. Colomb. 27(1), 41-48.
  6. Casierra-Posada, F., V.E. Barreto, and O.L. Fonseca. 2004. Crecimiento de frutos y ramas de duraznero (Prunus persica L. Batsch, cv. ’Conservero’) en los altiplanos colombianos. Agron. Colomb. 22(1), 40-45.
  7. Chaar, J. and D. Astorga. 2012. Determinación del requerimiento de frío y de calor en duraznero [Prunus persica (L.) Batsch.] mediante un modelo de correlación. RIA Rev. Investig. Agropecu. 38(3), 289-298.
  8. Cunha, L., M. Berlingieri, B. Mattiuz, R. Martins, and J. Durigan. 2007. Caracterização da curva de maturação de pêssegos ‘Aurora-1’, na região de Jaboticabal-SP. Rev. Bras. Frutic. 29(3), 661-665. Doi: 10.1590/S0100-29452007000300045
  9. Dela Bruna, E. 2007. Curva de crescimento de frutos de pêssego em regiões subtropicais. Rev. Bras. Frutic. 29(3), 685-689. Doi: 10.1590/S0100-29452007000300050
  10. Della Bruna, E. and A.L. Moreto. 2011. Desenvolvimento dos frutos de pêssego “Aurora” e nectarina “Sunraycer” no sul de Santa Catarina. Rev. Bras. Frutic. 33(Supl. 1), 485-492. Doi: 10.1590/s0100-29452011000500065
  11. Ducuara-Cabrera, W. 2017. Los frutales caducifolios: un recorrido a través del contexto agroindustrial y social boyacense. Cult. Cient. 15, 78-90.
  12. Fernandes, T.J., A.A. Pereira, J.A. Muniz, and T.V. Savian. 2014. Selection of nonlinear models for the description of the growth curves of coffee fruit. Coffee Sci. 9(2), 207-215.
  13. Fischer, G., F. Casierra-Posada, and C. Villamizar. 2011. Producción forzada de duraznero (Prunus persica (L.) Batsch) en el altiplano tropical de Boyacá (Colombia). Rev. Colomb. Cienc. Hortic. 4(1), 19-32. Doi: 10.17584/rcch.2010v4i1.1223
  14. Hanusz, Z., Z. Siarkowski, and K. Ostrowski. 2008. Zastosowanie modelu Gompertz’a w inżynierii rolniczej. Inżynieria Rolnicza 7(105), 71-77.
  15. Hunt, R. 2016. Growth analysis, individual plants. pp. 421-429. In: Thomas, B., B.G. Murray, and D.J. Murphy (eds.). Encyclopedia of applied plant sciences. 2nd ed. Vol. 1. Elsevier, Oxford, UK. Doi: 10.1016/B978-0-12-394807-6.00226-4
  16. Hurvich, C.M. and C.L. Tsai. 1993. A corrected akaike information criterion for vector autoregressive model selection. J. Time Ser. Anal. 14(3), 271-279. Doi: 10.1111/j.1467-9892.1993.tb00144.x
  17. Leal do Prado, T.K., T. Villela Savian, and J.A. Muniz. 2013. Ajuste dos modelos gompertz e logístico aos dados de crescimento de frutos de coqueiro anão verde. Cienc. Rural 43(5), 803-809. Doi: 10.1590/S0103-84782013005000044
  18. Marcelis, L.F.M. and E. Heuvelink. 2007. Concepts of modelling carbon allocation among plant argans. pp. 103-111. In: Proc. Frontis Workshop on Functional-Structural Plant Modelling in Crop Production. Springer, Dordrecht, The Netherlands.
  19. Meier, U. 2001. Growth stages of mono- and dicotyledonous plants: BBCH Monograph. Open Agrar Repositorium, Berlin. Doi: 10.5073/20180906-074619
  20. Menezes da Silva, É., M.H. Tadeu, V.F. da Silva, R. Pio, T.J. Fernandes, and J.A. Muniz. 2020. Description of blackberry fruit growth by nonlinear regression models. Rev. Bras. Frutic. 42(2), 1-11. Doi: 10.1590/0100-29452020177
  21. Miguez, F., S. Archontoulis, and H. Dokoohaki. 2018. Nonlinear regression models and applications. pp. 401-447. In: Glaz, B. and K.M. Yeater (eds.). Applied statistics in agricultural, biological, and environmental sciences. American Society of Agronomy; Wiley, Madison, WI. Doi: 10.2134/appliedstatistics.2016.0003.c15
  22. Muianga, C.A., J.A. Muniz, M.D.S. Nascimento, T.J. Fernandes, and T.V. Savian. 2016. Descrição da curva de crescimento de frutos do cajueiro por modelos não lineares. Rev. Bras. Frut. 38(1), 22-32. Doi: 10.1590/0100-2945-295/14
  23. Paine, C.E.T., T.R. Marthews, D.R. Vogt, D. Purves, M. Rees, A. Hector, and L.A. Turnbull. 2012. How to fit nonlinear plant growth models and calculate growth rates: An update for ecologists. Methods Ecol. Evol. 3(2), 245-256. Doi: 10.1111/j.2041-210X.2011.00155.x
  24. Peil, R.M. and J.L. Galvez. 2005. Reparto de materia seca como factor determinante de la producción de las hortalizas de fruto cultivadas en invernadero. Rev. Bras. Agrociênc. 11(1), 5-11.
  25. Pinzón, E.H., A. Cruz Morillo, and G. Fischer. 2014. Physiological aspects of peach (Prunus persica [L.] BATSCH) in the high tropical zone: A review. Rev. U.D.C.A Actual. Divulg. Cient. 17(2), 401-411.
  26. Pola, A.C., E. Della Bruna, Á.J. Back, and A.L. Moreto. 2016. Estimativa da duração da fase florescimento-colheita em variedades de pessegueiro em Urussanga, SC. Agrop. Catarinense 29(2), 68-73.
  27. Quevedo García, E., G.O. Cancino Escalante, and A.R. Barragán Torres. 2017. Modelos de regresión para estimar el peso seco de órganos y área del limbo del duraznero, variedad jarillo. Rev. U.D.C.A Actual. Divulg. Cient. 20(2), 299-310. Doi: 10.31910/rudca.v20.n2.2017.388
  28. Quevedo-García, E., A.E. Darghan, and G. Fischer. 2017. Clasificación de variables morfológicas del duraznero (Prunus persica L. Batsch) ‘Jarillo’ en la montaña santandereana colombiana mediante análisis discriminante lineal. Rev. Colomb. Cienc. Hortic. 11(1), 39-47. Doi: 10.17584/rcch.2017v11i1.6140
  29. Raftery, A.E. 1986. Choosing models for cross-classifications. Am. Sociol. Rev. 51(1), 145. Doi: 10.2307/2095483
  30. Ritz, C. and J.C. Streibig. 2005. Bioassay analysis using R. J. Stat. Softw. 12(5), 1-22. Doi: 10.18637/jss.v012.i05
  31. Sari, B.G., A.D.C. Lúcio, C.S. Santana, and T.V. Savian. 2019. Describing tomato plant production using growth models. Sci. Hort. 246, 146-154. Doi: 10.1016/j.scienta.2018.10.044
  32. Shabani, A., A.R. Sepaskhah, A.A. Kamgar-Haghighi, and T. Honar. 2018. Using double logistic equation to describe the growth of winter rapeseed. J. Agric. Sci. 156(1), 37-45. Doi: 10.1017/S0021859617000934
  33. Silva, É.M., V.F. Silva, F.A. Fernandes, J.A. Muniz, and T.J. Fernandes. 2019. O crescimento de frutos de pêssegos caracterizados por modelos de regressão não lineares. Sigmae 8(2), 290-294.
  34. Szabelska, A., M. Siatkowski, T. Goszczurna, and J. Zyprych. 2010. Comparison of growth models in package R. Nauka Przyr. Tech. 4(4), 1-9.
  35. Thompson, D.S. 2001. Extensiometric determination of the rheological properties of the epidermis of growing tomato fruit. J. Exp. Bot. 52(359), 1291-1301. Doi: 10.1093/jxb/52.359.1291
  36. Torres, E. 2006. Agrometeorologia. 2nd ed. Editorial Trillas, Mexico, DF
  37. Trudgill, D.L., A. Honek, D. Li, and N.M. Van Straalen. 2005. Thermal time: Concepts and utility. Ann. Appl. Biol. 146(1), 1-14. Doi: 10.1111/j.1744-7348.2005.04088.x
  38. Yin, X., J. Goudriaan, E.A. Lantinga, J. Vos, and H.J. Spiertz. 2003. A flexible sigmoid function of determinate growth. Ann. Bot. 91(3), 361-371. Doi: 10.1093/aob/mcg029

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a