Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Estudio numérico y comparativo del efecto de turbulencia en codos y dobleces para distribución de agua sanitaria

Resumen

En este artículo se presenta el estudio numérico y comparativo del efecto de turbulencia en codos y dobleces para diámetros de una pulgada, mediante CFD y bajo las mismas condiciones de trabajo (velocidad, presión y temperatura), para determinar la fluctuación en la turbulencia de energía cinética entre estos dos accesorios variando los modelos de turbulencia. Se emplearon dos metodologías para esta investigación, kappa-épsilon (k- ε) y kappa-omega (k-ω). El método (k- ε) se divide en tres modelos: estándar, RNG y realizable, en los cuales se genera turbulencia de energía cinética y de disipación. El método (k-ω) también posee tres variantes: estándar, SST, BSL. El trabajo presenta una mayor turbulencia para el método de (k- ε) en energía cinética y de disipación bajo el modelo estándar tanto para codo como doblez, mientras que en el método (k-ω) se produce una mayor turbulencia de energía cinética en el modelo BSL para ambos accesorios, al igual que en el método (k- ε), el modelo estándar de (k-ω) representa una mayor turbulencia de frecuencia.

Palabras clave

codo, doblez, kappa-épsilon, kappa-omega, turbulencia

PDF XML

Referencias

[1] J. Jiménez, "Turbulence structure and vortex dynamics," Eur. J. Mech. - B/Fluids., vol. 20 (5), pp. 746-747, Sep. 2001. https://doi.org/10.1016/s0997-7546(01)01149-9.

[2] L. Davidson. Fluid mechanics, turbulent flow and turbulence modeling, CFD Course, pp. 1–270, 2012. [Online]. Available at: https://es.scribd.com/document/321777933/Fluid-mechanics-turbulent-flow-and-turbulence-Lars-Davidson-pdf.

[3] P. Dutta, S. K. Saha, N. Nandi, and N. Pal, "Numerical study on flow separation in 90° pipe bend under high Reynolds number by k-ε modelling," Engineering Science and Technology an International Journal, vol. 19 (2), pp. 904-910, Jun. 2016. https://doi.org/10.1016/j.jestch.2015.12.005.

[4] Y. Ikarashi, T. Uno, T. Yamagata, and N. Fujisawa, "Influence of elbow curvature on flow and turbulence structure through a 90° elbow," Nuclear Engineering and Design, vol. 339, pp. 181-193, Dec. 2018. https://doi.org/10.1016/j.nucengdes.2018.09.011.

[5] D. Wang, D. Ewing, and C. Y. Ching, "Time evolution of surface roughness in pipes due to mass transfer under different Reynolds numbers," International Journal of Heat and Mass Transfer, vol. 103 pp. 661-671, Dec. 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.004.

[6] M. Zamani, S. Seddighi, and H. R. Nazif, "Erosion of natural gas elbows due to rotating particles in turbulent gas-solid flow," Journal of Natural Gas Science and Engineering, vol. 40, pp. 91-113, Apr. 2017. https://doi.org/10.1016/j.jngse.2017.01.034.

[7] N. Lin, H. Lan, Y. Xu, S. Dong, and G. Barber, "Effect of the gas-solid two-phase flow velocity on elbow erosion," Journal of Natural Gas Science and Engineering, vol. 26, pp. 581-586, Sep. 2015. https://doi.org/10.1016/j.jngse.2015.06.054.

[8] A. Zacarias, A. González, J. Granados, and A. Mota. Mecánica de fluidos, teoría con aplicación y moldeado. México: Patria, 2017.

[9] C. Rumsey, Modelos de turblencia: RANS y LES. s.l.: s.n., s.f.

[10] C. A. Bayona, L. P. Londoño, and E. A. Nieto, "Identificación del modelo de turbulencia más adecuado, utilizando software de dinámica de fluidos computacional, para el diseño del vehículo urbano de la competencia Shell Eco Marathon," Grade Thesis, Universidad de San Buenaventura, Bogotá D.C., Colombia, 2015.

[11] L. F. Toapanta-Ramos, A. G. Bohórquez, L. E. Caiza, and S. Quitiaquez, " Numerical analysis of the speed profiles of a water flow through a gradual reduction pipe," Enfoque UTE, vol. 9 (3), pp. 80-92, Sep. 2018. https://doi.org/10.29019/enfoqueute.v9n3.290.

[12] P. Mishra, and K.R. Aharwal, "A review on selection of turbulence model for CFD analysis of air flow within a cold storage," IOP Conf. Ser. Mater. Sci. Eng., vol. 402, pp. 012145-012153, Sep. 2018. https://doi.org/10.1088/1757-899X/402/1/012145.

[13] J. Shih, L. Tsan-Hsing, W. William, S. Aamir, Y. Zhigang, and J. Zhu, "A new eddy viscosity model for high Reynolds number turbulent flows," Computer Fluids, vol. 24 (3), pp. 227-238, 1995. https://doi.org/10.1016/0045-7930(94)00032-t.

[14] K. Ito, K. Inthavong, T. Kurabuchi, T. Ueda, T. Endo, T. Omori, H. Ono, S. Kato, K. Sakai, Y. Suwa, H. Matsumoto, H. Yoshino, W. Zhang, and J. Tu, "CFD Benchmark Tests for Indoor Environmental Problems: Part 1 Isothermal/Non-Isothermal Flow in 2D and 3D Room Model," Int. J. Archit. Eng. Technol., vol. 2 (1), pp. 01-22, Apr. 2015. https://doi.org/10.15377/2409-9821.2015.02.01.1.

[15] A. Tomboulides, S. M. Aithal, P. F. Fischer, E. Merzari, A. V. Obabko, and D. R. Shaver, "A novel numerical treatment of the near-wall regions in the k−ω class of RANS models," International Journal of Heat and Fluid Flow, vol. 72, pp. 186-199, Aug. 2018. https://doi.org/10.1016/j.ijheatfluidflow.2018.05.017.

[16] K. An, and J. C. H. Fung, "An improved SST k−ω model for pollutant dispersion simulations within an isothermal boundary layer," Journal of Wind Engineering and Industrial Aerodynamics, vol. 179, pp. 369-384, Aug. 2018. https://doi.org/10.1016/j.jweia.2018.06.010.

[17] B. Devolder, P. Troch, and P. Rauwoens, "Performance of a buoyancy-modified k-ω and k-ω SST turbulence model for simulating wave breaking under regular waves using OpenFOAM®," Coastal Engineering, vol. 138, pp. 49-65, Aug. 2018. https://doi.org/10.1016/j.coastaleng.2018.04.011.

[18] A. Tharwat, R. El-Samanoundy, and M. El-Baz, "Considerations of Stress Limiter for the SST Turbulence Model in Dual Throat Nozzle Predictions," in Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, 2016, pp.1-15.

[19] J. A. Mora, and G. R. Santos, "Modelación hidrodinámica Bi y Tridimensional de dos canales con disipador de energía del laboratorio de la Escuela Colombiana de Ingeniería utilizando Ansys Fluent," Master Thesis, Escuela Colombiana de Ingeniería, Bogotá D. C., Colombia, 2018.

Descargas

Los datos de descargas todavía no están disponibles.