Evaluation of Activated Carbon Electrodes as Anodes in a Microbial Fuel Cell Using Shewanella Putrefaciens
Abstract
In this work, three types of activated carbons were evaluated as electrodes in the anode chamber of a two-chamber microbial fuel cell (MFC). The evaluation was applied using a pure Shewanella Putrefaciens culture due to its gram-negative characteristics. In the cathode chamber, a platinum electrode was used, and a Nafion® 117 proton exchange membrane was selected as a separator of both chambers. The activated carbons were obtained from different precursors (coffee husk, commercial coal, and mineral coal), with different microporous and surface properties. From the voltage and current measurements, it was found that the cell power values varied between 0.008 mW and 0.045 mW. The electrode obtained from chemical activation of coffee husk with H3PO4 at 450 °C (Q) showed the best electrochemical behaviour and highest power values. This result may be mainly related to the macroscopic morphology and mesopores that improve the wettability of the surface by the medium thought carbonaceous material. SEM images showed a better biofilm formation, larger filaments of the bacteria, and micro-beds formation over the surface of bio-anode Q, which improved the interaction with the microorganism, its metabolism, and electrons extracellular transfer. Therefore, activated carbon from coffee husk could be considered as a promising material for electrodes of microbial fuel cells.
Keywords
activated carbon, anodic chamber, carbonaceous materials, mediators microorganism, Shewanella Putrefaciens, two chambers cells
Author Biography
Diana Marcela Vanegas-Hernández, Ph. D.
Doctora en ingeniería, Ingeniero Químico y docente de la Facultad de Ingeniería de la Universidad Pontificia Bolivariana. Coordinadora del Semillero de Pulpa y papel. Áreas de trabajo: Bioprocesos, Biopolímeros y materiales lignocelulósicos.
References
- T. González Estrada, and J. A. Valencia, Integración de las energías renovables no convencionales en Colombia. Bogotá D.C.: UPME, MINMINAS, BID, FMAM, 2015.
- F. N. Jiménez-García, A. M. Restrepo-Franco, and L. F. Mulcue-Nieto, “Estado de la investigación en energía en Colombia: una mirada desde los grupos de investigación,” Revista Facultad de Ingeniería, vol. 28 (52), pp. 9-26, 2019. https://doi.org/10.19053/01211129.v28.n52.2019.9651 DOI: https://doi.org/10.19053/01211129.v28.n52.2019.9651
- D. R. Lovley, “Bug juice: harvesting electricity with microorganisms.,” Nature Reviews Microbiology, vol. 4 (7), pp. 497-508, Jul. 2006. https://doi.org/10.1038/nrmicro1442 DOI: https://doi.org/10.1038/nrmicro1442
- P. Sengodon, and D. B. Hays, “Topic paper #13 Microbial Fuel Cells,” NPC Future Transportation Fuels Study: Advancing Technology for America’s Transportation Future Study Topic Papers. Texas, 2012.
- I. Kim, K.-J. Chae, M.-J. Choi, and W. Verstraete, “Microbial Fuel Cells: Recent Advances, Bacterial Communities and Application Beyond Electricity Generation,” Environmental Engineering Research, vol. 13 (2), pp. 51-65, 2008. https://doi.org/10.4491/eer.2008.13.2.051 DOI: https://doi.org/10.4491/eer.2008.13.2.051
- D. Pant, G. Van Bogaert, L. Diels, and K. Vanbroekhoven, “A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production,” Bioresource Technology, vol. 101 (6), pp. 1533-1543, Mar. 2010. https://doi.org/10.1016/j.biortech.2009.10.017 DOI: https://doi.org/10.1016/j.biortech.2009.10.017
- M. Osman, A. Shah, and F. Walsh, “Recent progress and continuing challenges in bio-fuel cells. Part II: Microbial,” Biosensors and Bioelectronics, vol. 26 (3), pp. 953-963, Nov. 2010. https://doi.org/10.1016/j.bios.2010.08.057 DOI: https://doi.org/10.1016/j.bios.2010.08.057
- A. Falcón, J. E. Lozano, and K. Juárez, “Bioelectricidad,” Rev. la Soc. Mex. Biotecnol. y Bioingeniería A.C., vol. 13 (3), pp. 62-78, 2009.
- A. R. Schoen, “Carbon fiber electrode as an electron acceptor for a microbial fuel cell using geobacter,” Cantaurus J. McPherson Coll. Sci., vol. 15, pp. 24-26, 2007.
- K. Scott, G. Rimbu, K. Katuri, K. Prasad, and I. Head, “Application of modified carbon anodes in microbial fuel cells,” Process Safety and Environmental Protection, vol. 85 (5), pp. 481-488, 2006. https://doi.org/10.1205/psep07018 DOI: https://doi.org/10.1205/psep07018
- H. F. Cui, L. Du, P. B. Guo, B. Zhu, and J. H. T. Luong, “Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode,” Journal of Power Sources, vol. 283, pp. 46-53, 2015. https://doi.org/10.1016/j.jpowsour.2015.02.088 DOI: https://doi.org/10.1016/j.jpowsour.2015.02.088
- H. J. Kim, H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim, “A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens,” Enzyme and Microbial Technology, vol. 30 (2), pp. 145-152, 2002. https://doi.org/10.1016/S0141-0229(01)00478-1 DOI: https://doi.org/10.1016/S0141-0229(01)00478-1
- C. K. Lee, A. J. Kim, G. S. Santos, P. Y. Lai, S. Y. Lee, D. F. Qiao, J. De Anda, T. D. Young, Y. Chen, A. R. Rowe, K. H. Nealson, P. S. Weiss, and G. C. L. Wong, “Evolution of Cell Size Homeostasis and Growth Rate Diversity during Initial Surface Colonization of Shewanella oneidensis,” ACS Nano, vol. 10 (10), pp. 9183-9192, 2016. https://doi.org/10.1021/acsnano.6b05123 DOI: https://doi.org/10.1021/acsnano.6b05123
- E. Marsili, D. B. Baron, I. D. Shikhare, D. Coursolle, J. A. Gralnick, and D. R. Bond, “Shewanella secretes flavins that mediate extracellular electron transfer,” PNAS, vol. 105 (10), pp. 3968-3973, 2008. https://doi.org/10.1073/pnas.0710525105 DOI: https://doi.org/10.1073/pnas.0710525105
- H. H. Hau, and J. A. Gralnick, “Ecology and Biotechnology of the Genus Shewanella,” Annual Review of Microbiology, vol. 61 (1), pp. 237-258, 2007. https://doi.org/10.1146/annurev.micro.61.080706.093257 DOI: https://doi.org/10.1146/annurev.micro.61.080706.093257
- S. You, Q. Zhao, J. Zhang, J. Jiang, and S. Zhao, “A microbial fuel cell using permanganate as the cathodic electron acceptor,” Journal of Power Sources, vol. 162 (2), pp. 1409-1415, 2006. https://doi.org/10.1016/j.jpowsour.2006.07.063 DOI: https://doi.org/10.1016/j.jpowsour.2006.07.063
- B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey, “Microbial Fuel Cells: Methodology and Technology,” Environmental Science and Technology, vol. 40 (17), pp. 5181-5192, 2006. https://doi.org/10.1021/es0605016 DOI: https://doi.org/10.1021/es0605016
- M. A. Ahmad, and N. K. Rahman, “Equilibrium, kinetics and thermodynamic of Remazol Brilliant Orange 3R dye adsorption on coffee husk-based activated carbon,” Chemical Engineering Journal, vol. 170 (1), pp. 154-161, 2011. https://doi.org/10.1016/j.cej.2011.03.045 DOI: https://doi.org/10.1016/j.cej.2011.03.045
- A. Maimulyanti, A. R. Prihadi, T. Rosita, and I. Safrudin, “Adsorption and recovery of aroma compounds from wastewater of clove oil distillation using coffee husk biosorbent,” ScienceAsia, vol. 45 (5), pp. 446-451, 2019. https://doi.org/10.2306/scienceasia1513-1874.2019.45.446 DOI: https://doi.org/10.2306/scienceasia1513-1874.2019.45.446
- L. C. A. Oliveira, E. Pereira, I. R. Guimaraes, A. Vallone, M. Pereira, J. P. Mesquita, and K. Sapag, “Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents,” Journal of Hazardous Materials, vol. 165 (1-3), pp. 87-94, Jun. 2009. https://doi.org/10.1016/j.jhazmat.2008.09.064 DOI: https://doi.org/10.1016/j.jhazmat.2008.09.064
- M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. W. Sing, “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” Pure and Applied Chemistry, vol. 87 (9-10), pp. 1051-1069, 2015. https://doi.org/10.1515/pac-2014-1117 DOI: https://doi.org/10.1515/pac-2014-1117
- X. Zhang, J. Shi, P. Liang, J. Wei, X. Huang, C. Zhang, and B. E. Logan, “Power generation by packed-bed air-cathode microbial fuel cells,” Bioresource Technology, vol. 142, pp. 109-114, Aug. 2013. https://doi.org/10.1016/j.biortech.2013.05.014 DOI: https://doi.org/10.1016/j.biortech.2013.05.014
- W. Michael Dunne Jr., “Bacterial Adhesion: Seen Any Good Biofilms Lately?,” Clinical Microbiology Reviews, vol. 15 (2), pp. 155-166, 2002. https://doi.org/10.1128/cmr.15.2.155-166.2002 DOI: https://doi.org/10.1128/CMR.15.2.155-166.2002
- J. C. Biffinger, J. Pietron, R. Ray, B. Little, and B. R. Ringeisen, “A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes,” Biosensors and Bioelectronics, vol. 22 (8), pp. 1672-1679, 2007. https://doi.org/10.1016/j.bios.2006.07.027 DOI: https://doi.org/10.1016/j.bios.2006.07.027
- Y. Yang, G. Sun, J. Guo, and M. Xu, “Differential biofilms characteristics of Shewanella decolorationis microbial fuel cells under open and closed-circuit conditions,” Bioresource Technology, vol. 102 (14), pp. 7093-7098, 2011. https://doi.org/10.1016/j.biortech.2011.04.073 DOI: https://doi.org/10.1016/j.biortech.2011.04.073
- T. H. Pham, P. Aelterman, and W. Verstraete, “Bioanode performance in bioelectrochemical systems: recent improvements and prospects,” Trends in Biotechnology, vol. 27 (3), pp. 168-178, Mar. 2009. https://doi.org/10.1016/j.tibtech.2008.11.005 DOI: https://doi.org/10.1016/j.tibtech.2008.11.005