Comparison of in Batch Aerobic and Anaerobic Processes for the Degradation of Organic Matter in a Tropical Reservoir

Comparación de procesos aerobios y anaerobios en batch para la degradación de la materia orgánica en un embalse tropical

Main Article Content

Johanna Elvira Rodríguez-Ballesteros
Diana Catalina Rodriguez-Loaiza, Ph. D.
Gustavo Antonio Peñuela-Mesa, Ph. D.

Abstract

The decomposition of submerged organic matter after the flooding process of a reservoir and the organic matter transported by the tributaries that supply it, gives rise to the formation of greenhouse gases (GHG), such as CO2 and CH4, product of the aerobic and anaerobic biological processes that take place both on the surface and at the bottom of the reservoir. In this study, the dynamics of aerobic and anaerobic processes as well as the generation of greenhouse gases in the degradation of organic matter, present in a tropical reservoir, were compared. Batch reactors and plant material extracted from the protection strip were used. Likewise, the behavior of the variation of the COD, physicochemical parameters such as pH, dissolved oxygen, redox potential, and conductivity were evaluated, and the kinetic constants that represent the behavior of organic matter were defined. The results showed that the degradation of the organic material leads to the generation of GHG, however, when using water plus vegetal material, the GHG increased considerably after a time. This process is due to the fact that the plant material suffers the breakdown of its polymer chains and so it degrades more quickly, which increases the concentration of organic matter available to microorganisms. GHG values ​​were on average 10.290 g CO2eq/m2.d with water only, and 24.536 g CO2eq/m2.d with water and vegetal material for aerobic processes. In anaerobic processes, the values were on average 12.056 g CO2eq/m2.d with water only, and 33.470 g CO2eq/m2.d with water plus vegetal material. These laboratory scale results allow analyzing the behavior of the reservoir and the incidence of flooded plant material on GHGs.

Keywords:

Downloads

Download data is not yet available.

Article Details

References (SEE)

R. Prasad, “Climate change assessment impacts of global warming, projections and mitigation of GHG emissions endorsing green energy,” International Educational Scientific Research Journal, vol. 4 (1), pp. 33-48, Jan. 2018.

H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, “IPCC Guidelines for National Greenhouse Gas Inventories,” Instituto de Estrategias Ambientales Globales (IGES), vol. 4, pp. 32., 2006.

H. O. Benavides, and G. E. Aristizabal, “Información técnica sobre gases de efecto invernadero y el cambio climático,” Instituto de Hidrología, Meteorología y Estudios Ambientales. Subdirección de meteorología, pp. 1-91. 2007.

A. W. Bambace, F. M. Ramos, B. T. Lima, and R. Rosa, “Mitigation and recovery of methane emissions from tropical hydroelectric dams,” Energy, vol. 32 (6), pp. 1038-1046, Jun. 2007. https://doi.org/10.1016/j.energy.2006.09.008

M. Demarty, and J. Bastien, “GHG emissions from hydroelectric reservoirs in tropical and equatorial regions: Review of 20 years of CH4 emissions measurements,” Energy Policy, vol. 39 (7), pp. 4197-4206, Jul. 2011. https://doi.org/10.1016/j.enpol.2011.04.033

C. Galy, R. Delmas, C. Jambert, J. F. Dumestre, L. Labroue, S. Richard, and P. Gosse, “Gaseous emissions and oxygen consumption in hydroelectric dams: A case study in French Guyana,” Global Biogeochemical Cycles, vol. 11(4), pp. 471-483, Dec. 1997. https://doi.org/10.1029/97gb01625

H. D. Cuadros, Y. Cuellar, J. S. Chiriví, and M. Guevara, “GHG diffuse emissions estimation, and energy security to ENSO using MERRA-2 for largely hydroelectricity-based system,” Revista Facultad de Ingeniería, vol. 91, pp. 70-82, Apr. 2019. https://doi.org/10.17533/10.17533/udea.redin.n91a07

Q. Hao, S. Chen, X. Ni, X. Li, X. He, and C. Jiang, “Methane and nitrous oxide emissions from the drawdown areas of the Three Gorges Reservoir,” Science of the Total Environment, vol. 660, pp. 567-576, Apr. 2019. https://doi.org/10.1016/j.scitotenv.2019.01.050

M. F. Umbarila., J. S. Prado and R. N. Agudelo, “Remoción de sulfuro empleando ozono como agente oxidante en aguas residuales de curtiembres,” Revista Facultad de Ingeniería, vol. 28 (51), pp. 25-38, 2019. https://doi.org/10.19053/01211129.v28.n51.2019.9081

G. Roldan, and J. Ramírez, Fundamentos de limnología neotropical, Medellín, Colombia: Editorial Universidad de Antioquia, Medellín, 2008

Y. Li, S. Liu, F. Chen, and J. Zuo, “Development of a dynamic feeding strategy for continuous-flow aerobic granulation and nitrogen removal in a modified airlift loop reactor for municipal wastewater treatment,” Science of The Total Environment, vol. 714, e136764, Apr. 2020. https://doi.org/10.1016/j.scitotenv.2020.136764

S. Mereu, J. Susnik, A. Trabucco, A. Daccache, L. Vamvakeridou, L. Renoldi, A. Dragan, and D. Assimacopoulos, “Operational resilience of reservoirs to climate change, agricultural demand, and tourism: A case of study from Sardinia,” Science of the total environment, vol. 543(B), pp. 1028-1038, Feb. 2015. https://doi.org/10.1016/j.scitotenv.2015.04.066

L. C. Corrales, D. M. Antolinez, J. A. Bohorquez, and A. M. Corredor, “Bacterias anaerobias: procesos que realizan y contribuyen a la sostenibilidad de la vida en el planeta,” NOVA, vol. 13(24), pp. 55-81, Dec. 2015. https://doi.org/10.22490/24629448.1717

Y. Kosugi, N. Matsuura, Q. Liang, and R. Yamamoto, “Nitrogen flow and microbial community in the anoxic reactor of “Sulfate Reduction, Denitrification/Anammox and Partial Nitrification” process,” Biochemical Engineering Journal, vol. 151, e107304, Nov. 2019. https://doi.org/10.1016/j.bej.2019.107304

M. Ruiz, D. C. Rodríguez, E. Chica, and G. Peñuela, “Calibration of two mathematical models at laboratory scale for predicting the generation of methane and carbon dioxide at the entrance point of the Chucurí river to the Topocoro Reservoir,” Ingeniería y Competitividad, vol. 21(1), pp. 11-22, Feb. 2019

L. M. Lopera, L. Oviedo, D. C. Rodríguez, and G. Peñuela, “Aplicación de ensayos en discontinuo para la determinación de flujos de metano y dióxido de carbono en la degradación del material vegetal en el embalse Topocoro,” Ingenierías USBMed, vol. 7(2), pp. 67-73, Oct. 2016. https://doi.org/10.21500/20275846.2598

E. W. Rice, R. B. Baird, and A. D. Eaton, Standard Methods for the Examination of Water and Wastewater. Washington D.C. United States: American Public Helth Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WPCF), 2017

I. Escaler, and R. Mujeriego, “Eliminación biológica de nutrientes (nitrógeno y fósforo) mediante un proceso discontinuo de fangos activados,” Ingeniería del agua, vol. 8(1), pp. 67-77, Mar. 2001. https://doi.org/10.4995/ia.2001.2860

J. Mata, Biomethanization of the organic fraction of municipal solid wastes, London, United Kingdom: IWA Publishing, 2003

P. G. Aceñolaza, Z. Zamboni, W. Sione, and F. Kalesnik, “Caracterización de la región superior del Complejo Litoral del Río Paraná: Grandes unidades de ambiente,” INSUGEO, vol. 17, pp. 293-308, Dec. 2008

C. Tejada, A. Herrera, and A. Villabona, “Assessment of Chemically Modified Lignocellulose Waste for the Adsorption of Cr (VI),” Revista Facultad de Ingeniería, vol. 29 (54), e10298, 2020. https://doi.org/10.19053/01211129.v29.n54.2020.10298

IHA (International Hydropower Associate), GHG measurement guidelines for freshwater reservoir, London, United Kingdom: UNESCO/IHA, 2010

F. Guerin, G. Abril, S. Richard, B. Burban, C. Reynouard, P. Seyler, and R. Delmas, R. “Methane and carbon dioxide emissions from tropical reservoirs: significance of downstream rivers,” Geophysical Research Letters, vol. 33(21), L21407, Nov. 2006. https://doi.org/10.1029/2006gl027929

Citado por: