Skip to main navigation menu Skip to main content Skip to site footer

Comparison of in Batch Aerobic and Anaerobic Processes for the Degradation of Organic Matter in a Tropical Reservoir

Abstract

The decomposition of submerged organic matter after the flooding process of a reservoir and the organic matter transported by the tributaries that supply it, gives rise to the formation of greenhouse gases (GHG), such as CO2 and CH4, product of the aerobic and anaerobic biological processes that take place both on the surface and at the bottom of the reservoir. In this study, the dynamics of aerobic and anaerobic processes as well as the generation of greenhouse gases in the degradation of organic matter, present in a tropical reservoir, were compared. Batch reactors and plant material extracted from the protection strip were used. Likewise, the behavior of the variation of the COD, physicochemical parameters such as pH, dissolved oxygen, redox potential, and conductivity were evaluated, and the kinetic constants that represent the behavior of organic matter were defined. The results showed that the degradation of the organic material leads to the generation of GHG, however, when using water plus vegetal material, the GHG increased considerably after a time. This process is due to the fact that the plant material suffers the breakdown of its polymer chains and so it degrades more quickly, which increases the concentration of organic matter available to microorganisms. GHG values ​​were on average 10.290 g CO2eq/m2.d with water only, and 24.536 g CO2eq/m2.d with water and vegetal material for aerobic processes. In anaerobic processes, the values were on average 12.056 g CO2eq/m2.d with water only, and 33.470 g CO2eq/m2.d with water plus vegetal material. These laboratory scale results allow analyzing the behavior of the reservoir and the incidence of flooded plant material on GHGs.

Keywords

organic matter, greenhouse effect, discontinuous, biological processes

PDF PDF (Español) XML

References

  1. R. Prasad, “Climate change assessment impacts of global warming, projections and mitigation of GHG emissions endorsing green energy,” International Educational Scientific Research Journal, vol. 4 (1), pp. 33-48, Jan. 2018.
  2. H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, “IPCC Guidelines for National Greenhouse Gas Inventories,” Instituto de Estrategias Ambientales Globales (IGES), vol. 4, pp. 32., 2006.
  3. H. O. Benavides, and G. E. Aristizabal, “Información técnica sobre gases de efecto invernadero y el cambio climático,” Instituto de Hidrología, Meteorología y Estudios Ambientales. Subdirección de meteorología, pp. 1-91. 2007.
  4. A. W. Bambace, F. M. Ramos, B. T. Lima, and R. Rosa, “Mitigation and recovery of methane emissions from tropical hydroelectric dams,” Energy, vol. 32 (6), pp. 1038-1046, Jun. 2007. https://doi.org/10.1016/j.energy.2006.09.008 DOI: https://doi.org/10.1016/j.energy.2006.09.008
  5. M. Demarty, and J. Bastien, “GHG emissions from hydroelectric reservoirs in tropical and equatorial regions: Review of 20 years of CH4 emissions measurements,” Energy Policy, vol. 39 (7), pp. 4197-4206, Jul. 2011. https://doi.org/10.1016/j.enpol.2011.04.033 DOI: https://doi.org/10.1016/j.enpol.2011.04.033
  6. C. Galy, R. Delmas, C. Jambert, J. F. Dumestre, L. Labroue, S. Richard, and P. Gosse, “Gaseous emissions and oxygen consumption in hydroelectric dams: A case study in French Guyana,” Global Biogeochemical Cycles, vol. 11(4), pp. 471-483, Dec. 1997. https://doi.org/10.1029/97gb01625 DOI: https://doi.org/10.1029/97GB01625
  7. H. D. Cuadros, Y. Cuellar, J. S. Chiriví, and M. Guevara, “GHG diffuse emissions estimation, and energy security to ENSO using MERRA-2 for largely hydroelectricity-based system,” Revista Facultad de Ingeniería, vol. 91, pp. 70-82, Apr. 2019. https://doi.org/10.17533/10.17533/udea.redin.n91a07 DOI: https://doi.org/10.17533/10.17533/udea.redin.n91a07
  8. Q. Hao, S. Chen, X. Ni, X. Li, X. He, and C. Jiang, “Methane and nitrous oxide emissions from the drawdown areas of the Three Gorges Reservoir,” Science of the Total Environment, vol. 660, pp. 567-576, Apr. 2019. https://doi.org/10.1016/j.scitotenv.2019.01.050 DOI: https://doi.org/10.1016/j.scitotenv.2019.01.050
  9. M. F. Umbarila., J. S. Prado and R. N. Agudelo, “Remoción de sulfuro empleando ozono como agente oxidante en aguas residuales de curtiembres,” Revista Facultad de Ingeniería, vol. 28 (51), pp. 25-38, 2019. https://doi.org/10.19053/01211129.v28.n51.2019.9081 DOI: https://doi.org/10.19053/01211129.v28.n51.2019.9081
  10. G. Roldan, and J. Ramírez, Fundamentos de limnología neotropical, Medellín, Colombia: Editorial Universidad de Antioquia, Medellín, 2008
  11. Y. Li, S. Liu, F. Chen, and J. Zuo, “Development of a dynamic feeding strategy for continuous-flow aerobic granulation and nitrogen removal in a modified airlift loop reactor for municipal wastewater treatment,” Science of The Total Environment, vol. 714, e136764, Apr. 2020. https://doi.org/10.1016/j.scitotenv.2020.136764 DOI: https://doi.org/10.1016/j.scitotenv.2020.136764
  12. S. Mereu, J. Susnik, A. Trabucco, A. Daccache, L. Vamvakeridou, L. Renoldi, A. Dragan, and D. Assimacopoulos, “Operational resilience of reservoirs to climate change, agricultural demand, and tourism: A case of study from Sardinia,” Science of the total environment, vol. 543(B), pp. 1028-1038, Feb. 2015. https://doi.org/10.1016/j.scitotenv.2015.04.066 DOI: https://doi.org/10.1016/j.scitotenv.2015.04.066
  13. L. C. Corrales, D. M. Antolinez, J. A. Bohorquez, and A. M. Corredor, “Bacterias anaerobias: procesos que realizan y contribuyen a la sostenibilidad de la vida en el planeta,” NOVA, vol. 13(24), pp. 55-81, Dec. 2015. https://doi.org/10.22490/24629448.1717 DOI: https://doi.org/10.22490/24629448.1717
  14. Y. Kosugi, N. Matsuura, Q. Liang, and R. Yamamoto, “Nitrogen flow and microbial community in the anoxic reactor of “Sulfate Reduction, Denitrification/Anammox and Partial Nitrification” process,” Biochemical Engineering Journal, vol. 151, e107304, Nov. 2019. https://doi.org/10.1016/j.bej.2019.107304 DOI: https://doi.org/10.1016/j.bej.2019.107304
  15. M. Ruiz, D. C. Rodríguez, E. Chica, and G. Peñuela, “Calibration of two mathematical models at laboratory scale for predicting the generation of methane and carbon dioxide at the entrance point of the Chucurí river to the Topocoro Reservoir,” Ingeniería y Competitividad, vol. 21(1), pp. 11-22, Feb. 2019
  16. L. M. Lopera, L. Oviedo, D. C. Rodríguez, and G. Peñuela, “Aplicación de ensayos en discontinuo para la determinación de flujos de metano y dióxido de carbono en la degradación del material vegetal en el embalse Topocoro,” Ingenierías USBMed, vol. 7(2), pp. 67-73, Oct. 2016. https://doi.org/10.21500/20275846.2598 DOI: https://doi.org/10.21500/20275846.2598
  17. E. W. Rice, R. B. Baird, and A. D. Eaton, Standard Methods for the Examination of Water and Wastewater. Washington D.C. United States: American Public Helth Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WPCF), 2017
  18. I. Escaler, and R. Mujeriego, “Eliminación biológica de nutrientes (nitrógeno y fósforo) mediante un proceso discontinuo de fangos activados,” Ingeniería del agua, vol. 8(1), pp. 67-77, Mar. 2001. https://doi.org/10.4995/ia.2001.2860 DOI: https://doi.org/10.4995/ia.2001.2860
  19. J. Mata, Biomethanization of the organic fraction of municipal solid wastes, London, United Kingdom: IWA Publishing, 2003
  20. P. G. Aceñolaza, Z. Zamboni, W. Sione, and F. Kalesnik, “Caracterización de la región superior del Complejo Litoral del Río Paraná: Grandes unidades de ambiente,” INSUGEO, vol. 17, pp. 293-308, Dec. 2008
  21. C. Tejada, A. Herrera, and A. Villabona, “Assessment of Chemically Modified Lignocellulose Waste for the Adsorption of Cr (VI),” Revista Facultad de Ingeniería, vol. 29 (54), e10298, 2020. https://doi.org/10.19053/01211129.v29.n54.2020.10298 DOI: https://doi.org/10.19053/01211129.v29.n54.2020.10298
  22. IHA (International Hydropower Associate), GHG measurement guidelines for freshwater reservoir, London, United Kingdom: UNESCO/IHA, 2010
  23. F. Guerin, G. Abril, S. Richard, B. Burban, C. Reynouard, P. Seyler, and R. Delmas, R. “Methane and carbon dioxide emissions from tropical reservoirs: significance of downstream rivers,” Geophysical Research Letters, vol. 33(21), L21407, Nov. 2006. https://doi.org/10.1029/2006gl027929 DOI: https://doi.org/10.1029/2006GL027929

Downloads

Download data is not yet available.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.