Skip to main navigation menu Skip to main content Skip to site footer

Potential Infiltration Determination in Areas of Influence of the Zona Bananera Aquifer in Northern Colombia

Abstract

Through the implementation of geographic information systems (GIS) and images of the study area obtained by remote sensors, the curve number method (NC) was implemented in this research, in order to determine potential recharge zones in two micro-basins in the aquifer region called Zona Bananera, located in the department of Magdalena in Northern Colombia. Potential infiltration of the area was estimated and the hydrological response for precipitation events with different return periods was evaluated. The predominant hydrological soil groups were found to be A and B, with 77.4% (84115.2 ha) in the Sevilla River micro-basin and 81.6% (7466.1 ha) in La Aguja micro-basin. The Sevilla River micro-basin showed both the best water regulation and enhancement of the infiltration process, evidenced by the existence of low as well as medium values ​​of curve number and potential surface runoff. The highest values ​​of potential runoff were in the middle and lower part of the micro-basins, where there are extensive areas covered with banana crops; indicating that anthropic intervention is a determining factor in the area’s hydrological response. Under current conditions, the micro-basins show a minimal risk of erosive processes for rainfall with return periods of less than 5 years, due to runoff occurrence of less than 100 mm. Within the study area, it was found that approximately 3380 hectares show favorable conditions to contribute to the recharge of the Zona Bananera aquifer, making it a strategic conservation area.

Keywords

Potential infiltration, Curve number, Recharge zones, Aquifer, Remote sensing, Runoff

PDF PDF (Español) XML

Author Biography

José Eduardo Revueltas-Martínez

Roles: Data curation, Formal analysis, Investigation and Writing – original draft.

Teobaldis Mercado-Fernandez, Ph. D.

Roles: Conceptualization, Formal analysis, Investigation, Methodology, Supervision and Writing – review & editing.

Sonia Aguirre-Forero, Ph. D.

Roles: Formal analysis, Investigation, Project administration and Writing – review & editing.


References

[1] Ingeominas, Atlas de aguas subterraneas de colombia en escala 1:500.000, Bogotá D.C, 2003.

[2] D. Le Maitre, I. M. Kotzee, and P. J. O’Farrell, “Impacts of land-cover change on the water flow regulation ecosystem service : Invasive alien plants , fire and their policy implications,” Land use policy, vol. 36, pp. 171-181, 2014. https://doi.org/10.1016/j.landusepol.2013.07.007

[3] A. Pulido, Nociones de Hidrogeologia para Ambientologos, Almeria: Editorial Universidad de Almeria, 2007.

[4] NRCS, Urban Hydrology for Small Watersheds TR-55NRCS, USDA Natural Resource Conservation Service Conservation Engeneering Division Technical Release 55, 1986.

[5] Á. Diaz, and T. Mercado, “Determinación del número de curva en la subcuenca de Betancí (Córdoba, Colombia) mediante teledetección y SIG,” Ingenieria y Desarrollo, vol. 35 (2), pp. 200-218, 2017. https://doi.org/10.14482/inde.35.2.10171

[6] H. Lian, H. Yenc, J.-C. Huang, Q. Feng, L. Qin, M. A. Bashira, S. Wu, A.-X. Zhu, J. Luo. H. Di, Q. Lei, and H. Liu, “Revised runoff curve number by using rainfall-runoff events data in China,” Water Research, vol. 177, pp. e 115767, 2020. https://doi.org/10.1016/j.watres.2020.115767

[7] A. Zabaleta, T. Mercado, J. L. Marrugo, and J. Feria, “Curve Number (CN) as Pressure Indicator of the Hydrological Condition under Global Warming Scenarios at a Local Scale in La Mojana Region , Colombia,” Indian Journal of Science and Technology, vol. 11 (29), pp. 1-12, 2018. https://doi.org/10.17485/ijst/2018/v11i29/129276

[8] F. Dominguez, and T. Mercado, “Potential infiltration and morphometry in the Arroyo Grande basin, Sucre Colombia Infiltración potencial y morfometria en la Cuenca Arroyo Grande, Sucre Colombia,” Revista Facultad Ingenieria Universidad de Antioquia, no. 96, pp. 21–31, 2020. https://doi.org/10.17533/udea.redin.20191043

[9] M. Rajasekhar, S. R. Gadhiraju, A. Kadam, and V. Bhagat, “Identification of groundwater recharge-based potential rainwater harvesting sites for sustainable development of a semiarid region of southern India using geospatial , AHP , and SCS-CN approach,” Arabian Journal of Geosciences, vol. 13, e24, 2020. https://doi.org/10.1007/s12517-019-4996-6

[10] H. M. Baalousha, N. Barth, F. H. Ramasomanana, and S. Ahzi, “Groundwater recharge estimation and its spatial distribution in arid regions using GIS : a case study from Qatar karst aquifer,” Modeling Earth Systems and Environment, vol. 4, pp. 1319-1329, 2018. https://doi.org/10.1007/s40808-018-0503-4

[11] K. Santhanam, and M. Abraham, “Assessment of surface water potential and groundwater recharge in ungauged watersheds : a case study in Tamil Nadu, India,” Environmental Earth Sciences, vol. 77, e788, 2018. https://doi.org/10.1007/s12665-018-7972-7

[12] E. Chuvieco, Fundamentos de Teledetección espacial, Madrid, 1996.

[13] E. Posada, Manual de prácticas de percepción remota con el programa ERDAS IMAGINE 2011, Bogota D.C.: Instituto Geográfico Agustín Codazzi, 2012.

[14] A. Ariza, Descripción y Corrección de Productos Landsat 8 LDCM (Landsat Data Continuity Mission), Bogotá D.C., 2013.

[15] R. Congalton, and K. Green, Assessing the accuracy of remotely sensed data: principles and practices, New York: CRC Press, 2009. https://doi.org/10.1201/9780429052729

[16] J. Loya, S. Aguilar, L. Bravo, and E. Sánchez, “Evaluación espacio-temporal del impacto del crecimiento urbano sobre la cobertura vegetal en la región fronteriza Nogales, México y Arizona, Estados Unidos, durante el periodo 1995-2010,” Revista Latinoamericana de Recursos Naturales, vol. 9 (1), pp. 124-140, 2013.

[17] NRCS, Hydrologic Soil Groups, National Engineering Handbook, 2009, p. 13.

[18] J. Mongil, and J. Navarro, “Infiltración y grupos hidrológicos de suelos en las laderas de los páramos (Valladolid),” Cuadernos de Investigación Geográfica, vol. 38 (1), pp. 131-153, 2012. https://doi.org/10.18172/cig.1279

[19] H. J. Niemann, and S. Diburg, “Statistics of extreme climatic actions based on the gumbel probability distributions with an upper limit,” Computers & Structures, vol. 126, pp. 193-198, 2013. https://doi.org/10.1016/j.compstruc.2013.03.016

[20] T. De Moraes, V. Dos Santos, M. Calijuri, and F. Pereira, “Effects on runoff caused by changes in land cover in a Brazilian southeast basin : evaluation by HEC‑HMS and HEC‑GEOHMS,” Environmental Earth Sciences, vol. 77, e250, 2018. https://doi.org/10.1007/s12665-018-7430-6

[21] A. Dahal, R. Khanal, and B. K. Mishra, “Identification of critical location for enhancing groundwater recharge in Kathmandu Valley, Nepal,” Groundwater for Sustainable Development, vol. 9, e100253, 2019. https://doi.org/10.1016/j.gsd.2019.100253

[22] S. Roy, and A. S. Sahu, “Effectiveness of basin morphometry, remote sensing, and applied geosciences on groundwater recharge potential mapping: a comparative study within a small watershed,” Frontiers of Earth Science, vol. 10, pp. 274-291, 2016. https://doi.org/10.1007/s11707-016-0558-3

[23] K. Ibrahim, and S. A. Ahmed, “Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India,” The Egyptian Journal of Remote Sensing and Space Science, vol. 19 (2), pp. 223-234, 2016. https://doi.org/10.1016/j.ejrs.2016.06.002

[24] O. O. Aladejana, A. T. Salami, and O. I. O. Adetoro, “Hydrological responses to land degradation in the Northwest Benin Owena River Basin, Nigeria,” Journal of Environmental Management, vol. 225, pp. 300-312, 2018. https://doi.org/10.1016/j.jenvman.2018.07.095

Downloads

Download data is not yet available.