Skip to main navigation menu Skip to main content Skip to site footer

Nuclear Energy: A Keystone in Colombia's Sustainable Energy Transition

Abstract

This article presents a comprehensive analysis of the potential integration and implications of Small Modular Reactors (SMRs) into Colombia's energy matrix, set against the backdrop of the global energy transition and the urgent need to address climate change. Focusing on the technical and technological aspects of nuclear energy, particularly SMRs, the study explores the advantages of nuclear power in terms of constant generation capacity and minimal carbon emissions, while also addressing public perception challenges and radioactive waste management. It delves into Colombia's current energy landscape, dominated by hydroelectric and thermal power, and highlights the need for diversification and resilience in the face of climatic and geopolitical challenges. The potential of SMRs in Colombia is scrutinized, considering their operational costs, environmental impact, and role in non-interconnected zones. Additionally, the article examines Colombia's historical and future trajectory in nuclear energy, emphasizing the importance of a robust regulatory framework, sustainable mining practices, public education, and awareness. The study concludes with strategic recommendations for Colombia, advocating for continuous training, international cooperation, exploration of economic opportunities, and investment in renewable energies alongside nuclear power to ensure a sustainable and diversified energy future.

Keywords

energy transition, environmental impact of nuclear power, levelized cost of energy, nuclear energy, radioactive waste management, Small Modular Reactors (SMRs), sustainability

PDF

References

  1. XM-Sinergox, CEN por tipo fuente natural y despacho, 2024. https://sinergox.xm.com.co/oferta/Paginas/Informes/CapacidadEfectiva.aspx
  2. P. Mohanakrishnan, O. P. Singh, K. Umasankari, “Physics of Nuclear Reactors,” Academic Press, 2021.
  3. J. Yu, Nuclear physics. Fundamental Principles of Nuclear Engineering, Springer Nature Singapore, 2022.
  4. I. Pioro, Handbook of generation IV nuclear reactors: A guidebook, Woodhead Publishing, 2022. https://doi.org/10.1115/1.4035327
  5. S. Adumene, R. Islam, M. T. Amin, S. Nitonye, M. Yadzi, K. T. Johnson, “Advances in nuclear power system design and fault-based condition monitoring towards safety of nuclear-powered ships,” Ocean Engineering, vol. 251, e111156, 2022. https://doi.org/10.1016/j.oceaneng.2022.111156
  6. B. Almomani, A. Alkhalidi, A. G. Olabi, H. Jouhara, “Expert opinions on strengths, weaknesses, opportunities, and threats of utilizing nuclear reactor waste heat for water desalination,” Desalination, vol. 564, e116777, Oct. 2023. https://doi.org/10.1016/j.desal.2023.116777
  7. Intergovernmental Panel on Climate Change, Climate Change 2022-Impacts, Adaptation and Vulnerability, Cambridge University Press, Jun. 2023. https://doi.org/10.1017/9781009325844
  8. S. M. De Vicente G., N. A. Smith, L. El-Guebaly, S. Ciattaglia, L. D. Pace, M. Gilbert, R. Mandoki, S. Rosanvallon, Y. Someya, K. Tobita, “Overview on the management of radioactive waste from fusion facilities: ITER, demonstration machines and power plants,” Nuclear Fusion, vol. 62, no. 8, e085001, May. 2022. https://doi.org/10.1088/1741-4326/ac62f7
  9. Q. Wang, J. Guo, R. Li, X. T. Yang, “Exploring the role of nuclear energy in the energy transition: A comparative perspective of the effects of coal, oil, natural gas, renewable energy, and nuclear power on economic growth and carbon emissions,” Environmental Research, vol. 221, e115290, Mar. 2023. https://doi.org/10.1016/j.envres.2023.115290
  10. A. Trespalacios, L. M. Cortés, J. Perote, “The impact of the El Niño phenomenon on electricity prices in hydrologic-based production systems: A switching regime semi-nonparametric approach,” Energy Science and Engineering, vol. 11, no. 5, pp. 1564-1578, Feb. 2023. https://doi.org/10.1002/ese3.1414
  11. M. Roser, “Data review: how many people die from air pollution?,” Our World in Data, 2021. https://ourworldindata.org/data-review-air-pollution-deaths#article-citation
  12. A. Bermúdez, “¿Energía varada? Mapeando las termoeléctricas de América Latina,” Dialogue Earth, 2020. https://dialogue.earth/es/energia/38222/
  13. A. G. Andal, S. PraveenKumar, E. G. Andal, M. A. Qasim, V. I. Velkin, “Perspectives on the Barriers to Nuclear Power Generation in the Philippines: Prospects for Directions in Energy Research in the Global South,” Inventions, vol. 7, no. 3, e53, Jun. 2022. https://doi.org/10.3390/inventions7030053
  14. International Energy Agency, Levelised Cost of Electricity Calculator, 2020. https://www.iea.org/data-and-statistics/data-tools/levelised-cost-of-electricity-calculator
  15. Nuclear Energy Agency, Levelised Cost of Electricity Calculator, 2020. https://www.oecd-nea.org/lcoe/
  16. A. R. Keeley, K. Komatsubara, S. Managi, “The value of invisibility: factors affecting social acceptance of renewable energy,” Energy Sources Part B: Economics Planning and Policy, vol. 17, no. 1, e1983891, Sep. 2021. https://doi.org/10.1080/15567249.2021.1983891
  17. Departamento Nacional de Planeación, El Plan Nacional de Desarrollo marca la ruta de la transición energética del país, 2023. https://www.dnp.gov.co/Prensa_/Noticias/Paginas/el-plan-nacional-de-desarrollo-marca-la-ruta-de-la-transicion-energetica-del-pais.aspx
  18. Unidad de Planeación Minero-Energética, Actualización Plan Energético Nacional (PEN) 2022-2052, 2022. https://www1.upme.gov.co/DemandayEficiencia/Documents/PEN_2020_2050/Actualizacion_PEN_2022-2052_VF.pdf
  19. Z. Wang, Y. Chandavuth, B. Zhang, Z. Ahmed, M. Ahmad, “Environmental degradation, renewable energy, and economic growth nexus: Assessing the role of financial and political risks?,” Journal of Environmental Management, vol. 325, e116678, Jan 2023. https://doi.org/10.1016/j.jenvman.2022.116678
  20. Unidad de Planeación Minero-Energética, Proyección de la demanda de energía eléctrica y potencia máxima 2023-2037, 2023. https://www1.upme.gov.co/DemandayEficiencia/Documents/UPME_Proyeccion_demanda_2023-2037_VF2.pdf
  21. R. Walton, $60/MWh for advanced nuclear electricity is achievable, says GE Hitachi executive, Aug. 2022. https://www.utilitydive.com/news/advanced-nuclear-ge-hitachi-mwh-nuscale-smr-small-modular-reactor/630154/
  22. International Atomic Energy Agency, Nuclear Power and the Clean Energy Transition, 2020. https://www.iaea.org/bulletin/61-3
  23. United Nations, Treaty on the Non-Proliferation of Nuclear Weapons (NPT), 2024. https://disarmament.unoda.org/wmd/nuclear/npt/text/
  24. Presidencia de la República de Colombia, Decreto 0381 de 2012, 2012. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=66321
  25. Ministerio de Minas y Energía, Resolución 181434 de 2002, 2002. https://www.suin-juriscol.gov.co/viewDocument.asp?id=4032693
  26. Ministerio de Minas y Energía, Resolución 180052 de 2008, 2008. https://normas.cra.gov.co/gestor/docs/resolucion_minminas_180052_2008.htm
  27. Ministerio de Minas y Energía, Resolución 181419 de 2004, 2004. https://www.mincit.gov.co/getattachment/a710f770-79bd-4d6f-947f-44cc87de8b9c/Resolucion-181419-del-4-de-noviembre-de-2004-Por-l.aspx
  28. C. R. Callejas, F. A. Rodriguez, M. A. Ortega, J. E. Ballesteros, C- J- Tovar, H. J. Sierra, J. F. García, H. F. Barbosa, G F De La Ossa, Lineamientos para el establecimiento de Minerales Estratégicos en Colombia, 2023. https://acmineria.com.co/sitio/wp-content/uploads/2023/05/27-03-2023_Documento_Lineamientos_minerales.pdf

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.