Skip to main navigation menu Skip to main content Skip to site footer

Significant Reductions in the Area in Corroded Steel and its Repercussion in Prefabricated Large-Panel Buildings

Abstract

In Santiago of Cuba, there is an architectural heritage built with the prefabricated I-464 system, popularly known as the Great Soviet Panel, with more than 50 years of use. The buildings present damages such as the corrosion of the steel in the slabs, panels and horizontal joints between them. To analyze the earthquake-resistant behavior of deteriorated buildings, it is necessary to specify the peculiarities of the steel used as reinforcement of the structural elements. Destructive testing of steel is implemented, as well as correlation of non-destructive test results with concrete, in particular ultrasonic pulse velocity, moisture, and corrosion potential. Visual inspections are also performed to identify cracking patterns, carbonation advance, and surface color. Among the main results obtained is that the quality of the steel for the 3 mm diameter bars, which make up the electro welded meshes of the panels, do not comply with the current requirements for earthquake resistant design. These bars, in addition to a yield strength higher than recommended, are smooth bars with a non-ductile behavior, since they do not have a defined elastic limit. A considerable reduction in the diameters of the corroded bars in relation to the high levels of corrosion was obtained due to the high percentages of humidity undoubtedly causing an appreciable reduction of the yield strength of these bars. It is observed that, in the elements with the highest percentages of humidity, the most negative potential values and those with the highest corrosion velocity are reached.

Keywords

attack penetration, corrosion velocity, diameter reduction, large panels, precast concrete, yield stress

PDF XML

Author Biography

Yamila-Concepción Socarrás-Cordoví

Roles: Writing – original draft, Investigation, Formal analysis.

Liliana González-Díaz

Roles: Writing – review & editing, Supervision, Investigation.

Eduardo-Rafael Álvarez-Deulofeu

Roles: Supervision, Investigation.


References

  1. M. Lawner, La KPD conquista León de Plata en la Bienal de Venecia, 2014. https://colegioarquitectos.com/noticias/?p=5300
  2. N. Salinas, “KPD en imágenes: antes y después de 1973,” in Monolith controversies. H. Palmarola and P. Alonso, Germany: Hatje Cantz Verlag, 2014, pp-105-111.
  3. Y. C. Socarrás. E. Álvarez. “Factores causantes de daños potenciales en el Gran Panel Soviético”, in VI Jornada Internacional de Ingeniería Civil, Cuba, 2019
  4. A. Flores, M. Flores, J. Uruchurtu, “Efecto de la corrosión del concreto reforzado con adición de polvo de grafito y su evaluación en sus propiedades fisico electroquímicas,” Revista ALCONPAT, vol. 11, no. 1, pp. 18-33, 2021. https://doi.org/10.21041/ra.v11i1.501 DOI: https://doi.org/10.21041/ra.v11i1.501
  5. Y. C. Socarrás-Cordoví, E. González-Diaz, M. Alvarez-Deulofeu, M. González-Fernández, E. Roca-Fernández, R. Torres-Shoembert, “Valuation of the Durability of the Concrete Used in the Precast Great Soviet Panel System,” Revista Facultad de Ingeniería, vol. 29, no. 54, 2020, e10486. https://doi.org/10.19053/01211129.v29.n54.2020.10486 DOI: https://doi.org/10.19053/01211129.v29.n54.2020.10486
  6. Y. C. Socarrás., E. González, M. Álvarez, M. González, E. Roca, “Evaluación de la calidad del hormigón en edificaciones construidas con el sistema prefabricado gran panel soviético,” Tecnología Química, vol. 40, no. 2, pp. 264-277, 2020.
  7. Norma Cubana NC.165:2002. Barras de acero para refuerzo de hormigón. Ensayos de tracción y doblado, 2002
  8. C. Rondón, Manual de Armaduras de Refuerzo para Hormigón. Fabricación-Instalación-Protección, Chile: Gerdau AZA. S. A, 2005
  9. Y. Du, L. Clark, A. Chan, “Effect of corrosion on ductility of reinforcing bars,” Magazine of Concrete Research, vol. 57. No. 7, pp. 407-419, 2005 DOI: https://doi.org/10.1680/macr.2005.57.7.407
  10. R. Maspons, Prefabricación, Ciudad de La Habana, Cuba: Editorial ISJAE, 1987
  11. Norma Cubana NC.7:2002. Barras de acero para refuerzo de hormigón. Especificaciones, 2002
  12. Federal Emergency Management Agency, FEMA 273. NEHRP Guidelines for the Seismic Rehabilitation of Buildings, 1997
  13. American Concrete Institute, ACI 318-19. Building code requirements for structural concrete, 2019
  14. Z. Frómeta, Caracterización y evaluación de los aceros de refuerzo producidos por ACINOX Las Tunas para su empleo en zona sísmica, Doctoral Thesis, Universidad Tecnológica de La Habana, Cuba, 2009
  15. Annual book of ASTM Standards, ASTM 876-91. Standard test method for half-cell potentials of uncoated reinforcing steel in concrete, 2000
  16. R. Solís, “Predicción de la resistencia del concreto con base en la velocidad de pulso ultrasónico y un índice de calidad de los agregados,” Ingeniería, vol. 8, pp. 41-52, 2004
  17. Proceq, Manual de operación 82039201S Datasheet, 2017. https://www.proceq.com/uploads/tx_proceqproductcms/import_data/files/Profometer_Operating%20Instructions_Spanish_high.pdf
  18. J. Rodríguez, J. Aragoncillo, C. Andrade, D. Izquierdo, Manual de evaluación de estructuras afectadas por corrosión de la armadura, England: GEOCISA- -Instituto Eduardo Torroja (CONTECVET), 2005
  19. S. Fernández, “Corrosión de armaduras en el hormigón armado en ambiente marino aéreo,” Ph.D. dissertation, Universidad Politécnica de Madrid, España, 2016. Available: http://oa.upm.es/39374/1/
  20. M. A. Bermúdez, Corrosión de las armaduras del hormigón armado en ambiente marino: Zona de carrera de mareas y zona sumergida, Doctoral Thesis, Universidad Politécnica de Madrid, Spain, 2007
  21. E. Moreno, Corrosión de armaduras en estructuras de hormigón: Estudio experimental de la variación de la ductilidad en armaduras corroídas aplicando el criterio de acero equivalente, Doctoral Thesis, Universidad Carlos III de Madrid, Spain, 2008. http://hdl.handle.net/10016/5095
  22. M.S. Darmawan, “Pitting corrosion model for reinforced concrete structures in a chloride environment,” Magazine of Concrete Research, vol. 62, no. 2, pp. 91-101, 2010. https://doi.org/10.1680/macr.2008.62.2.91 DOI: https://doi.org/10.1680/macr.2008.62.2.91
  23. C. Andrade, “Especificaciones de cálculo de la vida útil y estado límite de corrosión,” Revista ALCONPAT, vol. 3, no. 2, pp. 79-97, 2013 DOI: https://doi.org/10.21041/ra.v3i2.45
  24. E. Felix, T. Rodrigues, M. Correa, E. Possan, R. Carrazedo, “Análisis da vida útil de estructuras de concreto armado bajo la acción de la corrosión uniforme por medio de un modelo con RNA acoplado al MEF,” Revista ALCONPAT, vol. 8, no. 1, pp. 16-29, 2018. https://doi.org/10.21041/ra.v8i1.256 DOI: https://doi.org/10.21041/ra.v8i1.256
  25. A. Torres, Y. Hernández, O. Trocónis, S. Delgado, J. Rodríguez, “Agrietamiento de vigas de concreto por corrosión del acero de refuerzo cuando se les aplica una carga externa permanente,” Notas, vol. 109, e2, 2007
  26. A. Torres, M. Martínez, A. Muñoz. “Capacidad remanente en vigas de hormigón que presentan corrosión localizada en el acero de refuerzo,” Materiales de Construcción, vol. 53, no. 271, pp. 125-133, 2003 DOI: https://doi.org/10.3989/mc.2003.v53.i271-272.297
  27. Y. C. Socarrás, Procedimiento para la evaluación de daños sísmicos potenciales en el sistema prefabricado Gran Panel Soviético, Doctoral Thesis, Universidad de Oriente, Cuba, 2020
  28. M. García, M. Alonso, C. Andrade, J. Rodríguez, “Influencia de la corrosión en las propiedades mecánicas del acero,” Hormigón y Acero, vol. 210, pp. 11-21, 1998

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.