Skip to main navigation menu Skip to main content Skip to site footer

Mathematical Analysis of Discontinuous Rectification Columns at Pilot Scale Based on the Continuous Stable States Concept and MESH Equations

Abstract

Mathematical analysis and simulation of a discontinuous rectification column was performed using an operational strategy during the start-up before reaching a pseudo-stable state in discontinuous operation. The mathematical model was formulated focusing on the equilibrium state (ES) and implementing MESH equations (M: Mass balance, E: Equilibrium thermodynamics, S: Stoichiometry relations, H: Enthalpy or heat balance) to provide solutions using the Thomas method and the Wang-Henke algorithms internally coupled to the Fourth Order Runge-Kutta method. The results were validated with experimental data from a distillation column at a pilot scale using an ethanol-water system with an equilibrium behavior described by the UNIQUAC Functional-group Activity Coefficients (UNIFAC) and Predictive Soave-Redlich-Kwong (PSRK) thermodynamic models with a global error of 1.84%. The molar ethanol concentrations presented deviations from the mathematical model predictions from 1.51% to 0.02%, with a global mean error of 0.48%. A mean error of 0.055% was obtained for the temperature profile of the column, thus demonstrating the effectiveness of the solution and its convergence capacity. The solution based on the Thomas method and the Wang-Henke algorithms coupled to the Runge-Kutta method made it possible to describe the behavior and variables of all stages of the distillation column. Operation at total reflux from start-up avoids wasting product and allows for the stabilization of the state variables, such as temperature and molar composition.

Keywords

PSRK method, Thomas algorithm, UNIFAC model, UNIQUAC model, Wang-Henke algorithm

PDF XML

Author Biography

Jennyfer Diaz-Angulo

Roles: Conceptualization, Data curation, formal analysis, investigation, methodology, validation, writing - original draft.

Alfonso Barbosa-Meza

Roles: Data curation, investigation, methodology, validation.

Fiderman Machuca-Martínez

Roles: Formal analysis, Resources, Software, Supervision.

Miguel-Ángel Mueses

Roles: Formal analysis, Project administration, Supervision, Visualization, Writing - review and editing.


References

  1. M. D. López-Ramírez, F. O. Barroso-Muñoz, J. Cabrera-Ruiz, J. G. Segovia-Hernández, H. Hernández-Escoto, S. Hernández, “Some insights in experimental studies on the start-up operation of a reactive dividing wall column,” Chemical Engineering and Processing-Process Intensification, vol. 159, e108211, Feb. 2021. https://doi.org/10.1016/j.cep.2020.108211 DOI: https://doi.org/10.1016/j.cep.2020.108211
  2. S. Elguea, L. Prata, M. Cabassuda, J. M. Le Lann, J. C´ezeracb, “Dynamic models for start-up operations of batch distillation columns with experimental validation,” Computers and Chemical Engineering, vol. 28, no. 12, pp. 2735–2747, Nov. 2004. https://doi.org/10.1016/j.compchemeng.2004.07.033 DOI: https://doi.org/10.1016/j.compchemeng.2004.07.033
  3. I. Thomas, B. Wunderlich, S. Grohmann, “Pressure-driven dynamic process simulation using a new generic stream object,” Chemical Engineering Science, vol. 225, e115171, Apr. 2020. https://doi.org/10.1016/j.ces.2019.115171 DOI: https://doi.org/10.1016/j.ces.2019.115171
  4. J. R. González-Velasco, M. A. Gutierrez-Ortíz, J. M. Castresana-Pelayo, J. A. Gonzalez-Marcos, “Improvements in batch distillation start-up,” Industrial & Engineering Chemistry Research, vol. 26, no. 4, 745–750, Apr. 1987. https://doi.org/10.1021/ie00064a020 DOI: https://doi.org/10.1021/ie00064a020
  5. L. Wang, P. Li, G. Wozny, S. Wang, “A start-up model for simulation of batch distillation starting from a cold state,” Computers & Chemistry Engineering, vol. 27, no. 10, pp. 1485–1497, Oct. 2003. https://doi.org/10.1016/S0098-1354(03)00094-2
  6. E. Yamal, O. Martínez, “Simulación dinámica de una torre de destilación de platos perforados,” Revista Ingeniería UC, vol. 16, no. 1, pp. 65-70. Apr. 2009
  7. E.J. Henley, D. J. Seader, Separation operations by Equilibrium Stages in Chemical Engineering, UItah, United State, Ed. Reverte S.A., 1997
  8. M. Markowsky, S. Alabrudzinski, S. Storczyk, “Heat and mass exchanger model for hybrid heat integrated distillation systems (HHIDiS),” Applied Thermal Engineering, vol. 174, no. 25, e115249, Jun. 2020. https://doi.org/10.1016/j.applthermaleng.2020.115249 DOI: https://doi.org/10.1016/j.applthermaleng.2020.115249
  9. M. Chai, M. Yang, R. Qi, Z. Chen, J. Li, “Vapor-liquid equilibrium (VLE) prediction for dimethyl ether (DME) and water system in DME injection process with Peng-Robinson equation of state and composition dependent binary interaction coefficient,” Journal of Petroleum Science and Engineering, vol. 211, e110172, 2022. https://doi.org/10.1016/j.petrol.2022.110172 DOI: https://doi.org/10.1016/j.petrol.2022.110172
  10. J. Jaubert, R. Privat R, “Relationship between the binary interaction parameters (kij) of the Peng–Robinson and those of the Soave–Redlich–Kwong equations of state: Application to the definition of the PR2SRK model,” Fluid Phase Equilibria, vol. 295, no. 1, pp. 26–37. Aug. 2010. https://doi.org/10.1016/j.fluid.2010.03.037 DOI: https://doi.org/10.1016/j.fluid.2010.03.037
  11. E. Boonaert, A. Valtz, C. Coquelet, “Vapour-liquid equilibria of n-butane and ethyl mercaptan: Experiments and modeling,” Fluid Phase Equilibria, vol. 504, e112335, Jan. 2020. https://doi.org/10.1016/j.fluid.2019.112335 DOI: https://doi.org/10.1016/j.fluid.2019.112335
  12. J. M. Smith, H. C. Vann Ness, M. M. Abbott, Introducción a la termodinámica en Ingeniería Química, 7ª Ed. Mexico DF, McGraw Hill, 2007
  13. E. Jara, D. Collado, M. De la Cruz, V. C. M. Vivas, “Dynamic simulation of bioethanol in batch régimen,” Tecnia, vol. 21, no. 1, pp. 56-72. Jun. 2011. https://doi.org/10.21754/tecnia.v21i1.95 DOI: https://doi.org/10.21754/tecnia.v21i1.95
  14. L. Wanga, W. Gunter, S. Wang, “A startup model for simulation of batch distillation starting from a cold state,” Computers & Chemical Engineering, vol. 27, no. 10, pp. 1485-1497, Oct. 2003. https://doi.org/10.1016/S0098-1354(03)00094-2 DOI: https://doi.org/10.1016/S0098-1354(03)00094-2
  15. M. A. Mueses, F. Machuca-Martínez, “A Solution of the Rachford-Rice Equation for Multiphase Systems by Using the Newton-Raphson Method, Broyden Parameter and the Negative Flash,” Información Tecnológica, vol. 21, no. 4, pp. 3-10, Feb. 2010. https://doi.org/10.4067/S0718-07642010000400002 DOI: https://doi.org/10.4067/S0718-07642010000400002
  16. R. H. Perry, Manual del Ingeniero Químico, 6ª Ed., Tomo IV, Mexico DF, McGraw Hill, 1994
  17. F. S. Laganier, J. H. Le Lann, X. Joulia, B. Koehret, “Simultaneous modular dynamic simulation: Application to Interconnected Distillation Columns,” Computers & Chemical Engineering, vol. 17, no. S1, pp. 287-297, 1993. https://doi.org/10.1016/0098-1354(93)80241-E DOI: https://doi.org/10.1016/0098-1354(93)85042-K
  18. J. Albet, J. M. Le Lann, X. Joulia, B. Koehret, “Evolutions et tendances en simulation de colonnes de rectification discontinue,” The Chemical Engineering Journal, vol. 54, no. 2, pp. 95-106, Jun. 1994. https://doi.org/10.1016/0923-0467(93)02815-E DOI: https://doi.org/10.1016/0923-0467(93)02815-E
  19. S. Domenech, G. Muratet, M. Enjalbert, “Commandes en Temps Minimal d’une Rectification Discontinue,” The Chemical Engineering Journal, vol. 9, no. 2, pp. 125-135, 1975. https://doi.org/10.1016/0300-9467(75)80004-9 DOI: https://doi.org/10.1016/0300-9467(75)80004-9
  20. S. Aly, L. Pibouleau, S. Domenench, “Traitement par une méthode d’éléments finis de modelès de colonnes de rectification discontinue à garnissage,” The Canadian Journal of Chemical Engineering, vol. 65, no. 6, pp. 991-1003, Dec. 1987. https://doi.org/10.1002/cjce.5450650615 DOI: https://doi.org/10.1002/cjce.5450650615

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.