Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks
DOI:
https://doi.org/10.19053/01211129.v31.n59.2022.14037Keywords:
Artificial Neural Network, cold chain., Darcy-Weisbach, Levenberg-Marquardt, pipeline hydraulicsAbstract
The fifth-degree polynomial equation determines the diameter in pressurized drinking water systems. The input variables are Q: flow (m3/s), H: pressure drop (m); L: pipe length (m); ε: roughness (m), ϑ: kinematic viscosity (m2/s), and Ʃk: sum of minor loss coefficients (dimensionless). After applying the energy equation for a hydraulic system composed of two tanks connected to a pipe of constant diameter and accepting the Colebrook-White and the Darcy-Weisbach equations, an undetermined expression is obtained since more unknowns than equations are established. This problem is solved by implementing a nested loop for the coefficient of friction and the diameter. This article proposes an Artificial Neural Network (ANN) implementing the Levenberg-Marquardt backpropagation method to estimate the diameter from the log-sigmoidal transfer function under stationary flow conditions. The training signals set consists of 5,000 random data that follow a normal distribution, calculated in Visual Basic (®Excel). The statistics used for the network evaluation correspond to the mean square error, the regression analysis, and the cross-entropy function. The architecture with the best performance had a hidden layer with 25 neurons (6-25-1) presenting an MSE equal to 5.41E-6 and 9.98E+00 for the Pearson Correlation Coefficient. The cross-validation of the neural scheme was carried out from 1,000 independent input signals from the training set, obtaining an MSE equal to 6.91E-6. The proposed neural network calculates the diameter with a relative error equal to 0.01% concerning the values obtained with ®Epanet, evidencing the generalizability of the optimized system.
Downloads
References
E. Ladino, C. García, M. García, "La implicancia económica mediante Newton Rapshon para el desarrollo de un aplicación Android para el diseño del diámetro de tuberías a presión," Aglala, vol. 11, no. 1, pp. 149-168, 2020
N. Zaragoza, J. Baeza, "Determinación del diámetro de sistemas de tuberías mediante la utilización del Visual Basic para Aplicaciones y el Método de Aproximación de Punto Fijo," Ingeniería, vol. 7, no. 2, pp. 55-64, 2003
E. Ladino, C. García, M. García, "Darcy-Weisbach resistance coefficient determination using Newton-Raphson approach for android 4.0," Tecnura, vol. 23, no. 60, p. 52–58, 2019. https://doi.org/10.1016/j.egypro.2016.11.077
Z. Rao, F. Alvaruiz, "Use of an artificial neural network to capture the domain knowledge of a conventional hydraulic simulation model," Q IWA Publishing Journal of Hydroinformatics |, vol. 1, no. 9, 2007. https://doi.org/10.2166/hydro.2006.014
Y. Najjar, Quick manual for the use of ANN program TR-SEQ1, Manhattan: Department of Civil Engineering, Kansas State University, 1999
M. T. Hagan, M. Menhaj, "Training feedforward networks with the Marquadt algorithm," IEEE Transactions on Neural Networks, vol. 5, no. 6, pp. 989-993, 1994. https://doi.org/10.1109/72.329697
K. Kipli, M. Mohd, S. Wan Masra, N. Zamhari, K. Lias, D. Awang , "Performance of Levenberg-Marquardt Backpropagation for Full Reference Hybrid Image," in Proceeding of the international multiconference of engineers and computer scientists, 2012, pp. 20-25
J. Dawidowicz, "A Method for Estimating the Diameter of Water Pipes Using Artificial Neural Networks of the Multilayer Perceptron Type," Technologies and Applications, vol. 4, no. 1, pp. 26-30, 2018
J. Dawidowicz, "Evaluation of a pressure head and pressure zones in water distribution systems by artificial neural networks," Neural Computing and Applications, vol. 30, pp. 2531–2538, 2018. https://doi.org/10.1007/s00521-017-2844-8
A. Markopoulos, S. Georgiopoulos, D. Manolakos, "On the use of back propagation and radial basis function neural networks in surface roughness prediction," Journal of Industrial Engineering International, vol. 12, pp. 389–400, 2016
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Cesar-Augusto García-Ubaque, Edgar-Orlando Ladino-Moreno, María-Camila García-Vaca

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles included in the Revista Facultad de Ingeniería are published under the Creative Commons (BY) license.
Authors must complete, sign, and submit the Review and Publication Authorization Form of the manuscript provided by the Journal; this form should contain all the originality and copyright information of the manuscript.
The authors who publish in this Journal accept the following conditions:
a. The authors retain the copyright and transfer the right of the first publication to the journal, with the work registered under the Creative Commons attribution license, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this Journal.
b. Authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly indicate that the work It was first published in this Journal.
c. Authors are allowed and recommended to publish their work on the Internet (for example on institutional or personal pages) before and during the process.
review and publication, as it can lead to productive exchanges and a greater and faster dissemination of published work.
d. The Journal authorizes the total or partial reproduction of the content of the publication, as long as the source is cited, that is, the name of the Journal, name of the author (s), year, volume, publication number and pages of the article.
e. The ideas and statements issued by the authors are their responsibility and in no case bind the Journal.