Skip to main navigation menu Skip to main content Skip to site footer

Knowing the Big Data


Given the importance acquired by the term Big Data, the present investigation aims to study and analyze thoroughly the Big Data state of art. Moreover, a second objective is to study the features, tools, technologies, models and standards related to Big Data. And finally it seeks to identify the most relevant features that manage Big Data, so it can be known everything about the focus of the investigation.

Regarding the methodology used in the development of the research, included to review the state of the art of Big Data, and show what is its current situation, to know the Big Data technologies, to present some of the NoSQL databases, which are those that allow to process unstructured data formats. Also display data models and the analysis technologies they offer, to end with some benefits from Big Data.

The methodology desing used in this investigation, was not experimental, because no variables are manipulated, neither exploratory ones, because with the present investigation, only begins to know the Big Data evirioment.


big data, Hadoop, MapReduce, NoSQL, data analysis, data model

PDF (Español) HTML (Español)


  1., CBS Interactive,What is “Big Data?”. Disponible en:, 2013.
  2.,(2012). Disponible en:, 2012.
  3. E. Dans. Disponible en:, 2011.
  4. E. Plugge, P. Membrey & T. Hawkins, The Definitive Guide to MongoDB: The NoSQL Database for Cloud and Desktop Computing, Published Apress Media LLC, New York, 2010.
  5. B. Hopkins, Beyond the Hype of Big Data. Disponible en:, 2011.
  6. Business Software, Disponible en:, 2013.
  7., Big Data. Disponible en:, 2010.
  8. M. Salgado, Oracle apuesta por Big Data con tecnología y proyectos. Disponible en:, 2014.
  9. P. Russom, Big Data Analytics, TDWI (The Data Warehousing Institute), 2012.
  10. S. Montoro, Server and Cloud Platform. Disponible en:, 2012.
  11., Examining HDFS and NameNode in Hadoop architecture. Disponible en:, 2012.
  12., Disponible en:, 2013.
  13., IBM Big Data and analyticsplatform. Disponible en:, 2012.
  14., ¿Qué es Big Data? Disponible en:, 2012.
  15., RFID. Disponible en:, 2010.
  16. E. Redmond, & J. Wilson, Seven Databases in Seven Weeks, USA: O’Reilly Media, Inc., Pragmatic Programmers, LLC.2012.
  17., Big Data transforms Business. Disponible en:, 2012.
  18. T. Olavsrud, Big Data Causes Concern and Big Confusion.Disponible en:, 2012.
  19., Disponible en:, 2013.
  20. Chuck Lam, Hadoop in Action, Publisher: Manning Publications Co., Stamford, 2011.
  21., Cloudera, Inc. Disponible en:, 2013.
  22. P. Zikopoulos, C. Eaton, D. DeRoos, T. Deutsch, &G. Lapis, Understanding Big Data, USA: McGraw-Hill Books, 2012.
  23. Universidad Simón Bolívar, Laboratorio Docente de Computación. Disponible en:
  24. Microsoft, SharePoint. Disponible en:, 2014.
  25. S. Montoro, Disponible en: http://www., 2009.
  26. N. Dimiduk, & A. Khurana, HBase in Action, USA: Manning Publications Co, 2013.
  27., El motor de análisis de texto más fácil de usar. Disponible en:, 2013.
  28. C. Preimesberger, eWeek.Disponiblen:, 2011.
  29. Basho Technologies, Inc., Disponible en:, 2011-2014.
  30. T. Juravich, CouchDB and PHP Web Development Beginner’s Guide, Birmingham – Mumbai: Packt Publishing Ltd., 2012.
  31. L. Joyanes, Big Data: Análisis de grandes volúmenes de datos en organizaciones, Editorial Alfaomega, 2013.
  32., 9 Open Source Big Data Technologies to Watch. Disponible en:, 2012.
  33. K. Chodorow, MongoDB: The Definitive Guide, Second Edition, USA: O’Reilly Media, Inc., 2013.
  34. S. Francia, MongoDB and PHP, USA:O’Reilly Media, Inc.,2012.
  35. BaseXTeam, Disponible en:, 2013.
  36. P. Karl, Moving Media Storage Technologies: Applications &Workflows for Video and Media Server Platforms, USA: Elsevier, Inc, 2011.
  37. Adelman Sid, Moss Larissa T., & Abai Majid, Data Strategy, USA: Prentice Hall, 2005.
  38., Google BigQuery.Disponible en:, 2012.
  39.,ThinkUp, un motor de análisis de datos.Disponible en:, 2012.
  40. T. White, Hadoop: The Definitive Guide, USA: O’Reilly, Media, Inc, 2009.
  41. T. Rodríguez, Amazon lanza DynamoDB, una base de datos NoSQL desarrollada internamente. Disponible en:, 2012.
  42. The Apache Software Foundation, Welcome to Apache Cassandra. Disponible en:, 2009.
  43. The Apache Software Foundation, ApacheHBase. Disponible en:, 2014.
  44., InfoSphere Streams. Disponible en:, 2013.
  45. project-voldemort, Voldemort is a distributed key-value storage system. Disponible en:, 2014.
  46. IBM International Business Machines Corporation, IBM InfoSphere Information Server. Disponible en:, 2012.
  47. IBM Corporation Software Group Route 100 Somers, IBM PureData System for Operational Analytics. NY 10589. Disponible en:, 2012.
  48. Mariño E., Business Software, In-Memory: edificación de una empresa que opera en tiempo real. Disponible en:, 2011.
  49. itelligence AG, SAP In-Memory Computing. Disponible en:, 2013.
  50. J. P. Dijcks, Oracle: Big Data for the Enterprise. Disponible en:, 2013.
  51. StackpoleBeth, Disponible en:, 2011.
  52. F. Carrasco, Los 6 pasos que su organización debe seguir para confiar en Big Data. América Latina. Disponible en:, 2013.
  53. P. Zikopoulos, D. deRoos, K. Parasuraman, T. Deutsch, D. Corrigan, &J. Giles, Harness the Power of Big Data, McGraw-Hill Companies, 2013.


Download data is not yet available.