Characterization and lipid profile of oil from microalgae

Main Article Content

Autores

Lesly Tejeda-Benítez
Daniela Henao-Argumedo
Mario Alvear-Alayón
Carlos Rafael Castillo-Saldarriaga

Abstract

The increasing use of biodiesel has prompted the search for new raw materials, among them are highlighted the microalgae. In this research the cultivation of microalgae Chlorella sp. and Dunaliella salina at different conditions of pH and nitrogen is reported, and the oils obtained from them characterization, in order to assess the biodiesel potential production. D. salina reached the maximun cells concentration, during a 6 days cultivation, at pH 8.5 and 0.1 mg L-1 of nitrogen, obtaining values of 1.15x106 cells mL-1, while the Chlorella sp. under a pH value of 7.5 and 0.1 mg L-1 of nitrogen conditions, achieved the maximun concentrations of 2.6x107 cells mL-1. Analysis of the fatty acid profiles revealed that the most abundant were linolenic, and then, oleic, this implies a large number of unsaturations that would have negative implications on the physicochemical properties and performance of biodiesel combustion.

Keywords:

Article Details

Licence

All articles included in the Revista Facultad de Ingeniería are published under the Creative Commons (BY) license.

Authors must complete, sign, and submit the Review and Publication Authorization Form of the manuscript provided by the Journal; this form should contain all the originality and copyright information of the manuscript.

The authors who publish in this Journal accept the following conditions:

a. The authors retain the copyright and transfer the right of the first publication to the journal, with the work registered under the Creative Commons attribution license, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this Journal.

b. Authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly indicate that the work It was first published in this Journal.

c. Authors are allowed and recommended to publish their work on the Internet (for example on institutional or personal pages) before and during the process.
review and publication, as it can lead to productive exchanges and a greater and faster dissemination of published work.

d. The Journal authorizes the total or partial reproduction of the content of the publication, as long as the source is cited, that is, the name of the Journal, name of the author (s), year, volume, publication number and pages of the article.

e. The ideas and statements issued by the authors are their responsibility and in no case bind the Journal.

References

[1] R. Halim, M. K. Danquah and P. A. Webley, “Extraction of oil from microalgae for biodiesel production: A review”, Biotech. Adv., vol. 30, pp. 709-732, Mayo–Jun. 2012.

[2] E. Sánchez, K. Ojeda, M. El-Halwagi et al., “Biodiesel from microalgae oil production in two sequential esterification/transesterification reactors: Pinch analysis of heat integration”, Chem. Eng. J., vol. 176–177, pp. 211-216, Dec. 2011.

[3] H. Li, Z. Liu, Y. Zhanget al., “Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction”, Bioresource Technology, vol. 154, pp. 322-329, Feb. 2014.

[4] Y. Peralta-Ruiz, A.D. González-Delgado and V. Kafarov, “Evaluation of alternatives for microalgae oil extraction based on exergy analysis”, Applied Energy, vol. 101, pp. 226-236, Jan. 2013.

[5] T. Mata, A. Martins and N. Caetano, “Microalgae for biodiesel production and other applications: A review”, Renewable and Sustainable Energy Reviews, vol. 14, pp. 217-232, Jan. 2010.

[6] G. Tüccar and K. Aydın, “Evaluation of methyl ester of microalgae oil as fuel in a diesel engine”, Fuel, vol. 112, pp. 203-207, Oct. 2013.

[7] C. Yoo, S.Y. Jun, J. Y. Lee et al., “Selection of microalgae for lipid production under high levels carbon dioxide”, Bioresource Technology, vol. 101, pp. S71-S74, Jan. 2010.

[8] J. Y. Lee, C. Yoo, S. Y. Jun et al., “Comparison of several methods for effective lipid extraction from microalgae”, Bioresource Technology, vol. 101, pp. S75-S77, Jan. 2010.

[9] Y. M. Dai, K. T. Chen and C. C. Chen, “Study of the microwave lipid extraction from microalgae for biodiesel production” Chem. Eng. J., vol. 250, pp. 267-273, Aug. 2014.

[10] C. M. Teixeira and E. Morales, “Microalga como matéria-prima para a produção de biodiesel,” Annals of I Congress of the Brazilian Network of Biodiesel Technology, Brasilia, 2006.

[11] C. Safi, B. Zebib, O. Merah et al., “Morphology, composition, production, processing and applications of Chlorella vulgaris: A review”, Renewable and Sustainable Energy Reviews, vol. 35, pp. 265-278, , Jul. 2014.

[12] P. Lamers, M. Janssen, R. De Voset al., “Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga”, J. of Biotech., vol.162, pp. 21-27, Nov. 2012.

[13] P.R. Walne, “The Culture of Bivalve Molluscs: 50 Years of Experience at Conwy”, Fishing News, West Byfleet, pp. 173, 1974.

[14] S. Archanaa, S. Moise and G.K. Suraishkumar, “Chlorophyll interference in microalgal lipid quantification through the Bligh and Dyer method”, Biomass and Bioenergy, vol. 46, pp. 805-808, Nov. 2012.

[15] NORMA NTC 218. Grasas y aceites vegetales y animales. Determinación del índice de acidez y de la acidez.

[16] NORMA NTC 236. Grasas y aceites vegetales y animales. Determinación del índice de peróxido.

[17] NORMA NTC 287. Grasas y aceites animales y vegetales. Determinación del contenido de humedad y materia volátil.

[18] NORMA NTC 289. Grasas y aceites animales y vegetales. Determinación del índice de refracción.

[19] NORMA NTC 336. Grasas y aceites animales y vegetales. Método de la determinación de la densidad.

[20] NORMA NTC 5478. Grasas y aceites comestibles. Determinación del punto humo, chispa e ignición método Cleveland de copa abierta.

[21] N. Aguirre, J. Palacio, I. Correa et al., “Ensayos de bioestimulación algal con diferentes relaciones nitrógeno: fósforo, bajo condiciones de laboratorio”, Revista de Ingenierías Universidad de Medellín, vol. 6, pp. 11-21, Jul. – Dic. 2007.

[22] R. Salomón, I. Albarracin and G. Pio, “Sensibilidad de Chlorella vulgaris y Scenedesmus quadricauda a la Cipermetrina. Fase preliminar”, Retel, vol. 7, pp. 1-15, May. 2005.

[23] V. Díaz and C. Ordoñez, C. “Evaluación del pH y la agitación del medio más adecuado para el crecimiento de la Dunaliella salina en condiciones de laboratorio”, Tesis de Grado Microbiología Industrial, Pontificia Universidad Javeriana, Bogotá, 2006.

[24] D. Fimbres, L. Mercado, A. Murguía et al., “Crecimiento y biomasa de Dunaliella sp. cultivada en medios limitantes en nitrógeno”, Biotecnia, vol. 12, pp. 58-66, Sept. – Dic. 2010.

[25] A. Vásquez-Suárez, M. Guevara, G. Salazar et al., “Crecimiento y composición bioquímica de cuatro especies de Dunaliella para ser utilizadas en Acuicultura”, Boletín del Centro de Investigaciones Biológicas de la Universidad de Zulia, vol. 41, pp. 181-194, 2007.

[26] L. Rodolfi, G. Chini-Zittelli, N. Bassi et al., “Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor”, Biotechnology and Bioengineering, vol. 102, p.p. 100–112, Jan. 2009.

[27] Y. Liang, N. Sarkany and Y. Cui, “Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions”, Biotechnology Letters, vol. 31, pp. 1043-1049, Jul. 2009.

[28] R. Praveenkumar, B. Kim, E. Choi, K. Lee, J. Park, J. Lee, Y. Lee, Y. Oh, “Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas”, Bioresource Technology, vol. 171, pp. 500-505, Nov. 2014.

[29] R. Praveenkumar, K. Shameera, G. Mahalakshmi, M. Akbarsha, N. Thajuddin, “Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: Evaluation for biodiesel production”, Biomass and Bioenergy, vol. 37, pp. 60-66, Feb. 2012.

[30] P. Zhao, X. Yu, J. Li, X. Tang, Z. Huang, “Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10”, Journal of Bioscience and Bioengineering, vol. 118, pp. 72–77, Jul. 2014.

[31] L. Gouveia and A.C. Oliveira, “Microalgae as a raw material for biofuels production”, Journal of Industrial Microbiology & Biotechnology, vol. 36, pp. 269-274, Feb. 2009.

[32] M. Takagi and K., T. Yoshida, “Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells”, Journal of Bioscience and Bioengineering, vol. 101, pp. 223-226, Mar. 2006.

[33] G. Petkov and G. Garcia, “Which are fatty acids of the green alga Chlorella?”, Biochemical Systematics and Ecology, vol. 35, pp. 281-285, May. 2007.

[34] D. Leung, W. Xuan and M. Leung, “A review on biodiesel production using catalyzed transesterification”, Applied Energy, vol. 87, pp. 1083–1095, Apr. 2010.

Downloads

Download data is not yet available.