Small deep hole drilling electro discharge machining process optimization using Taguchi method

Main Article Content


Guillermo Jiménez-Chavarro
Arthur José Vieira-Porto
Roberto Hideaki-Tsunaki


Small deep hole drilling in high hardness metals is an operation beyond the reach of the conventional drilling machine process, and one of the most suitable processes for this operation is the Electro Discharge Machining, EDM. Due to the numerous variables involved in electro discharge machining and the restrictions imposed by the small size, it is necessary to determine the precise adjustment level for each of the variables in order to reach an efficient and good quality machining process.

This paper shows how using a Taguchi L27 orthogonal arrangement, the cleaning effect of the electrical variables, and the electrode diameter on the machining characteristics of small diameter holes in a DIN 1.3344 work piece, made it possible to be analyzed. The experimental analysis results and their data turned into noise signals, allowed to optimize the material removal rate, the feed rate drilling speed, the electrode wear and the surface roughness.


Article Details


All articles included in the Revista Facultad de Ingeniería are published under the Creative Commons (BY) license.

Authors must complete, sign, and submit the Review and Publication Authorization Form of the manuscript provided by the Journal; this form should contain all the originality and copyright information of the manuscript.

The authors who publish in this Journal accept the following conditions:

a. The authors retain the copyright and transfer the right of the first publication to the journal, with the work registered under the Creative Commons attribution license, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this Journal.

b. Authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly indicate that the work It was first published in this Journal.

c. Authors are allowed and recommended to publish their work on the Internet (for example on institutional or personal pages) before and during the process.
review and publication, as it can lead to productive exchanges and a greater and faster dissemination of published work.

d. The Journal authorizes the total or partial reproduction of the content of the publication, as long as the source is cited, that is, the name of the Journal, name of the author (s), year, volume, publication number and pages of the article.

e. The ideas and statements issued by the authors are their responsibility and in no case bind the Journal.


P. C. Pande and H. S. Shan, Modern Machining Processes. New Delhi: Tata McGraw Hill Publications Ltd, 2008.

N. Mohd, D. G. Solomon and Md. Fuad Bahari, “A review on current research trends in electrical discharge machining (EDM)”, International Journal of Machine Tools and Manufacture, vol. 47 (7-8), pp. 1214-1228, Jun. 2007. DOI:

M. Cao, Y. Hao, Y. Cao and S. Yang, “Mechanism and Experimental Research on Small-Hole EDM with Cu-Cr Composite Electrode”, Sensors & Transducers, vol. 174 (7), pp. 268-272, Jul. 2014.

P. J. Ross, “Projeto por Parâmetros por Tolêrancias”, Aplicações das tecnicas Taguchi na Engenharia da Qualidade. São Paulo, Brasil: Mc-Graw Hill, 1991.

M. Simon and L. Grama, "Studies for obtaining a Small Hole, Rapid EDM Drilling Machine", Scientific Bulletin of the Petru Maior University of Targu Mures, vol. 8 (2), pp. 189-191, Dec. 2011.

M. M. Rahman, M. A. R. Khan, K. Kadirgama, M. M. Noor and R. A. Bakar, “Experimental Investigation into Electrical Discharge Machining of Stainless Steel 304”, Journal of Applied Sciences, vol. 11 (3), pp. 549-554, 2011. DOI:

S. Hayakawa, Y. Sasaki, F. Itoigawa and T. Nakamura, “Relationship between occurrence of material removal and bubble expansion in electrical discharge machining”, Procedia CIRP 6, pp. 174-179, 2013. DOI:

H. Takezawa, Y. Ito and N. Mohri, “The Behavior of Thin Electrode Wear in Electrical Discharge Machining”, 13th International Symposium for Electromachining ISEM XIII, pp. 727-735, Bilbao, España, 2001.

M. Ndaliman, A. Khan and M. Ali, “Influence of dielectric fluids on surface properties of electrical discharge machined titanium alloy”, Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, vol. 227 (9), pp. 1310-1316, Sep. 2013. DOI:

C. Purcar and C. Simion, “Studies about the roughness of the surfaces machined by EDM”, Nonconventional Technologies Review, pp. 78-81, Jun. 2012.

S. S. Habib, “Study of the parameters in electrical discharge machining through response surface methodology approach”, Applied Mathematical Modelling, vol. 33 (12), pp. 4397-4407, Dec. 2009. DOI:


Download data is not yet available.