Spin Coating technique for obtaining nanometric thin films in the system La0.7Sr0.3MnO3


  • Jenny Alejandra Mera-Córdoba M. Sc. Institución Universitaria CESMAG (Pasto-Nariño, Colombia).
  • María Angélica Mera-Córdoba Universidad de Nariño (Pasto-Nariño, Colombia).
  • Carlos Arturo Córdoba-Barahona M. Sc. Universidad de Nariño (Pasto-Nariño, Colombia).




manganite, Perovskite, thin films


Manganite in the La0.7Sr0.3MnO3 system is of great interest due to its potential application in fuel cells, information storage, magnetic field sensors, non-volatile memories, oxygen sensors, and catalysts in the oxidation of light hydrocarbons. Given the scientific relevance of this material, this study describes the procedure to synthesize and characterize thin films of La0.7Sr0.3MnO3. Manganites were synthesized by means of the Pechini method, and deposited on strontium titanate substrates using spin-coating. Both the crystallinity of the films and their phases were studied with X-ray diffraction (XRD), finding that the films are polycrystalline and have a simple cubic structure with a lattice constant a=3.8653 ± 0.066 Ǻ. Scanning electron microscopy (SEM) showed a uniform surface with good morphological features, and the spectrum resulted from the Energy Dispersive X-Ray Spectroscopy (EDS) analysis over the same film was consistent with the molar ratio of the perovskite. Samples of 2, 4, and 6 layers were synthesized, obtaining thicknesses of 75.10 ± 0.01, 75.02 ± 0.01 and 74.07 ± 0.08 nm per monolayer. The results indicate that this method is useful to synthesize films of high crystalline quality and nanometric size.


Download data is not yet available.


F. Damay, A. Maignan, C. Martin, and B. Raveau, “Cation size temperature phase diagram of the manganites La0,5.Sr0,5MnO3,” J. Appl. Phys., vol. 81 (3), pp. 1372-1377, Feb. 1997. DOI: http://doi.org/10.1063/1.363873. DOI: https://doi.org/10.1063/1.363873

K. M. Krishnan, A. R. Modak, H. Ju, and P. Bandaru, “Synthesis, Tailored Microstructures and ‘Colossal’ Magnetoresistance in Oxide Thin Films,” LBNL. Berkeley Lab., vol. 83, pp. 1-9, Sep. 1996.

H. B. Wang, G. Y. Meng, and D. K. Peng, “Aerosol and plasma assisted chemical vapor deposition process for multicomponent oxide La0.8Sr0.2MnO3 thin films,” Thin Solid Films, vol. 368 (2), pp. 275-278, Jun. 2000. DOI: http://doi.org/10.1016/S0040-6090(00)00781-1. DOI: https://doi.org/10.1016/S0040-6090(00)00781-1

M. A. Ahmad, Y. T. Lee, C. I. Cheon, E.-J. Yun, and R. Plana, “Tunable (La, Sr) MnO3 (LSMO) ferromagnetic thin films for radio frequency applications,” IEEE Microwave and Wireless Components Letters, vol. 19 (1), pp. 36-38, Jan. 2009. DOI: http://doi.org/10.1109/LMWC.2008.2008575. DOI: https://doi.org/10.1109/LMWC.2008.2008575

Z. F. Duan, J. N. Wei, Y. Cui, and G. Y. Zhao, “Preparation of LSMO/PLZT Composite Film by Sol-Gel Technique and its Ferroelectric and Ferromagnetic Properties,” Materials Science Forum, vol. 815, pp. 166-170, Mar. 2015. DOI: http://doi.org/10.4028/www.scientific.net/MSF.815.166. DOI: https://doi.org/10.4028/www.scientific.net/MSF.815.166

C. Zhou et al., “Green catalyst: magnetic La0,7Sr0,3MnO3 hollow microspheres,” New J. Chem., vol. 39 (4), pp. 2413-2416, Jan. 2015. DOI: http://doi.org/10.1039/C4NJ01955E. DOI: https://doi.org/10.1039/C4NJ01955E

J. Mera, M. Mera, C. Cordoba, O. Paredes, and O. Morán, “La0,7Sr0,3MnO3 Nanoparticles Synthesized via the (Pechini) Polymeric Precursor Method,” J. Supercond Nov Magn., vol. 26 (7), pp. 2553-2556, Jul. 2013. DOI: http://doi.org/10.1007/s10948-012-1570-9. DOI: https://doi.org/10.1007/s10948-012-1570-9

J. Alvarado-Floresa J. Espino-Valencia, and L. Avalos-Rodríguez, “Análisis de materiales catódicos de estructura perovskita para celdas de combustible de óxido sólido, sofc’s,” Revista Mexicana de Física, vol. 61, pp. 32-57, Jan. 2015.

C.-M. Chuang et al., “Nanolithography made from water-based spin-coatable LSMO resist,” Nanotechnology, vol. 17 (17), pp. 4399, Aug. 2006. DOI: http://doi.org/10.1088/0957-4484/17/17/019. DOI: https://doi.org/10.1088/0957-4484/17/17/019

S. M. Montemayor, L. A. García-Cerda, and J. R. Torres-Lubián, “Uso de una resina polimérica en la formación de nanopartículas magnéticas dentro de una matriz de sílice,” Superficies y Vacío, vol. 17, pp. 21-24, Jun. 2004.

P. Chang-Sun Park and Ho-Jung Sun, “Preparation of Semiconductive La0.6Sr0.4MnO3 Thin Films for Electrode Applications by Using Metal-organic Decomposition,” Journal of the Korean Physical Society, vol. 57 (41), pp. 994-999, Oct. 2010. DOI: http://doi.org/10.3938/jkps.57.994. DOI: https://doi.org/10.3938/jkps.57.994

I. E. Medina, L. E. Arámbula, F. Rizo, and A. Román, “Diseño y fabricación de un aparato para el depósito de películas delgadas por el método de rotación,” Investigación y Ciencia, vol. 17 (45), pp. 44-49, Dec. 2009.

R. Caruso, O. de Sanctis, and N. Pellegri, “Síntesis y caracterización de PZT por el proceso sol- gel,” Anales Alfa, vol. 8, pp. 281-284, 1996.

N. Levin, J. Field, F. M. Plock, and L. Merker, “Some Optical Properties of Strontium Titanate Crystal,” Journal of the Optical Society of America, vol. 45 (9), pp. 737-739, Sep. 1955. DOI: http://doi.org/10.1364/JOSA.45.000737. DOI: https://doi.org/10.1364/JOSA.45.000737

D. Martínez, C. Córdoba, J. Mera, and O. Paredes, “Construcción y calibración de un equipo para la deposición de nanopelículas sol-gel por el método de rotación o spin-coating,” Revista de la Sociedad Colombiana de Física, vol. 42 (2), pp. 208-2012, Jan. 2010.

J. Mera, C. Córdoba, and O. Paredes, “Medición del espesor de recubrimientos en multicapas obtenidos por el proceso Sol Gel en el sistema FeO-SiO2,” Revista de la Sociedad Colombiana de Física, vol. 38, pp. 577-580, Jun. 2006.

J. Martín, “XPowder. Programa para análisis cualitativo y cuantitativo por difracción de rayos X,” Macla, vol. 2, pp. 35-44, 2006.

Y. Kato, Y. Kaneko, H. Tanaka, and Y. Shimada, “Nonvolatile Memory Using Epitaxially Grown Composite-Oxide-Film Technology,” Japanese Journal of applied physics, vol. 47 (4S), pp. 2722, Apr. 2008. DOI: http://doi.org/10.1143/JJAP.47.2719. DOI: https://doi.org/10.1143/JJAP.47.2719

E. Nieto, J. F. Fernández, P. Durán, and C. Moure, “Películas delgadas: fabricación y aplicaciones,” Boletín de la Sociedad Española de Cerámica y Vidrio, vol. 33 (5), pp. 245-258, 1994.

J. Mera et al., “Epitaxial Zn0,9Mn0,1O thin film sablated from targets synthesized by wet chemistry method,” Physica B: Condensed Matter, vol. 405 (16), pp. 3463-3467, Aug. 2010. DOI: http://doi.org/10.1016/j.physb.2010.05.024. DOI: https://doi.org/10.1016/j.physb.2010.05.024

G. Aubert and R. Pierrat, Précis de minéralogie, París, Italia: Librairie de Firmin Didot Fréres, 1978.

E. Y. Sun, S. R. Nutt, and J. J. Brennan, “High-Temperature Tensile Behavior of a Boron Nitride-Coated Silicon Carbide-Fiber Glass-Ceramic Composite,” Journal of American Ceramic Society, vol. 79 (6), pp. 1521-1529, Jun. 1996. DOI: http://doi.org/10.1111/j.1151-2916.1996.tb08760.x. DOI: https://doi.org/10.1111/j.1151-2916.1996.tb08760.x

C. J. Brinker, A. J. Hurd, P. R. Schunk, G. C. Frye, and C. S. Ashley, “Review of Sol-Gel thin film formation,” Journal of Non-Crystalline Solids, vol. 147-148, pp. 424-436, 1992. DOI: http://doi.org/10.1016/S0022-3093(05)80653-2. DOI: https://doi.org/10.1016/S0022-3093(05)80653-2



  • Abstract
  • PDF
  • XML

How to Cite

Mera-Córdoba, J A, Mera-Córdoba, M A, & Córdoba-Barahona, C A. (2017). Spin Coating technique for obtaining nanometric thin films in the system La0.7Sr0.3MnO3. Revista Facultad de Ingeniería, 26(44), 125–133. https://doi.org/10.19053/01211129.v26.n44.2017.5783