Skip to main navigation menu Skip to main content Skip to site footer

Study of the calcination process of two limonitic iron ores between 250 °C and 950 °C

Abstract

The dehydration process of two limonitic ores from Venezuela was studied between 250 °C and 950 °C by means of thermogravimetry, infrared spectroscopy, and x-ray diffraction. These techniques indicated for both minerals that the goethite-to-hematite transformation occurred in the range of 250-350 °C. In addition, the x-ray diffraction showed a structural re-arrangement within the orebody above 350 °C, temperature above which only the hematite structure is recognizable. Finally, infrared spectroscopy revealed that such transformation implies the loss of structural OH- functional groups, characteristic of the limonite.

Keywords

Iron Ore, Limonite, Thermal Modification of Minerals

PDF XML

References

  1. H. Kokal, M. Singh, and V. Naydyonov, "Removal of phosphorus from Lisakovsky by roast-leach process," in Electrometallurgy and Environmental Hydrometallurgy, C. Young et al., Eds. Hoboken, NJ, USA: The Minerals, Metals and Materials Society, 2003, vol. 2. DOI: http://doi.org/10.1002/9781118804407.ch33. DOI: https://doi.org/10.1002/9781118804407.ch33
  2. P. Palacios, A. Bustamante, P. Romero-Gómez, and J. González, "Kinetic study of the thermal transformation of limonite to hematite by X-ray diffraction, μ-Raman and Mössbauer spectroscopy," Hyperfine Interact, vol. 203 (1-3), pp. 113-118, Nov. 2011. DOI: http://doi.org/10.1007/s10751-011-0352-2. DOI: https://doi.org/10.1007/s10751-011-0352-2
  3. K. Ionkov, S. Gaydardzhiev, D. Bastin, A. Correa, and M. Lacoste, "Removal of phosphorous through roasting of oolitic iron ore with alkaline earth additives," in XXVI International Mineral Processing Congress, New Delhi, 2012, pp. 2194-2205.
  4. J. Li, K. Bunney, H. Watling, and D. Robinson, "Thermal pre-treatment of refractory limonite ores to enhance the extraction of nickel and cobalt under heap leaching conditions," Minerals Engineering, vol. 41, pp. 71-78, Feb. 2013. DOI: http://doi.org/10.1016/j.mineng.2012.11.002. DOI: https://doi.org/10.1016/j.mineng.2012.11.002
  5. E. Núñez, E. Jaimes, and J. Castillo, "Reducibility and mineralogy types of the fine iron ore for fluid bed direct reduction process," in 5th IAS Ironmaking Conference, San Nicolás, Argentina, 2005, pp. 267-276.
  6. Gariglio E., Oliveira D., Mafra W., Silva C., and Correa D., "Evaluation of iron ore value in use for DR/EAF processes – CVRD experience," in 5th IAS Ironmaking Conference, San Nicolás, Argentina, 2005, pp. 277-285.
  7. K. Jang, V. Nunna, S. Hapugoda, A. Nguyen, and W. Bruckard, "Chemical and mineral transformation of a low grade goethite ore by dehydroxylation, reduction roasting and magnetic separation," Minerals Engineering, vol. 60, pp. 14-22, Jun. 2014. DOI: http://doir.org/10.1016/j.mineng.2014.01.021. DOI: https://doi.org/10.1016/j.mineng.2014.01.021
  8. R. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd ed. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co, 2003. DOI: https://doi.org/10.1002/3527602097
  9. I. Mitov, D. Paneva, and B. Kunev, "Comparative study of the thermal decomposition of iron oxyhydroxides," Thermochimica Acta, vol. 386 (2), pp. 179-188, Apr. 2002. DOI: http://doi.org/10.1016/S0040-6031(01)00808-5. DOI: https://doi.org/10.1016/S0040-6031(01)00808-5
  10. F. Honglei, S. Baozhen, and L. Qiaoxia, "Thermal behavior of goethite during transformation to hematite," Materials Chemistry and Physics, vol. 98 (1), pp. 148-153, Jul. 2006. DOI: http://doi.org/10.1016/j.matchemphys.2005.09.005. DOI: https://doi.org/10.1016/j.matchemphys.2005.09.005
  11. V. Balek and J. Subrt, "Thermal behaviour of iron(III) oxide hydroxides," Pure and Applied Chemistry, vol. 67 (11), pp. 1839-1842, Jan. 1995. DOI: http://doi.org/10.1351/pac199567111839. DOI: https://doi.org/10.1351/pac199567111839
  12. J. Boily, J. Szanyi, and A. Felmy, "A combined FTIR and TPD study on the bulk and surface dehydroxylation and decarbonation of synthetic goethite," Geochimica et Cosmochimica Acta, vol. 70 (14), pp. 3613-3624, Jul. 2006. DOI: http://doi.org/10.1016/j.gca.2006.05.013. DOI: https://doi.org/10.1016/j.gca.2006.05.013
  13. Y. Cudennec and A. Lecerf, "Topotactic transformations of goethite and lepidocrocite into hematite and maghemite," Solid State Sciences, vol. 7 (5), pp. 520-529, May. 2005. DOI: http://doi.org/10.1016/j.solidstatesciences.2005.02.002. DOI: https://doi.org/10.1016/j.solidstatesciences.2005.02.002
  14. H. Ruan, R. Frost, and J. Kloprogge, "The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 57 (13), pp. 2575-2586, Nov. 2001. DOI: http://doi.org/10.1016/S1386-1425(01)00445-0. DOI: https://doi.org/10.1016/S1386-1425(01)00445-0
  15. M. Landers and R. Gilkes, "Dehydroxylation and dissolution of nickeliferous goethite in New Caledonian lateritic Ni ore," Applied Clay Science, vol. 35 (3-4), pp. 162-172, Feb. 2007. DOI: http://doi.org/10.1016/j.clay.2006.08.012. DOI: https://doi.org/10.1016/j.clay.2006.08.012
  16. E. Wolska, "Relations between the existence of hydroxyl ions in the anionic sublattice of hematite and its infrared and X-ray characteristics," Solid State Ionics, vol. 28-30 (2), pp. 1349-1351, Sep. 1988. DOI: http://doi.org/10.1016/0167-2738(88)90385-2. DOI: https://doi.org/10.1016/0167-2738(88)90385-2
  17. H. Ruan, R. Frost, J. Kloprogge, and L. Duong, "Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite," Spectrochim Acta A Mol Biomol Spectrosc, vol. 58 (5), pp. 967-981, Mar. 2002. DOI: https://doi.org/10.1016/S1386-1425(01)00574-1
  18. P. Prasad, K. Shiva, V. Krishna, K. Babu, B. Sreedhar, and S. Ramana,"In situ FTIR study on the dehydration of natural goethite," Journal of Asian Earth Sciences, vol. 27 (4), pp. 503-511, Sep. 2006. DOI: http://doi.org/10.1016/j.jseaes.2005.05.005. DOI: https://doi.org/10.1016/j.jseaes.2005.05.005

Downloads

Download data is not yet available.