Study of the calcination process of two limonitic iron ores between 250 °C and 950 °C
Abstract
The dehydration process of two limonitic ores from Venezuela was studied between 250 °C and 950 °C by means of thermogravimetry, infrared spectroscopy, and x-ray diffraction. These techniques indicated for both minerals that the goethite-to-hematite transformation occurred in the range of 250-350 °C. In addition, the x-ray diffraction showed a structural re-arrangement within the orebody above 350 °C, temperature above which only the hematite structure is recognizable. Finally, infrared spectroscopy revealed that such transformation implies the loss of structural OH- functional groups, characteristic of the limonite.
Keywords
Iron Ore, Limonite, Thermal Modification of Minerals
References
- H. Kokal, M. Singh, and V. Naydyonov, "Removal of phosphorus from Lisakovsky by roast-leach process," in Electrometallurgy and Environmental Hydrometallurgy, C. Young et al., Eds. Hoboken, NJ, USA: The Minerals, Metals and Materials Society, 2003, vol. 2. DOI: http://doi.org/10.1002/9781118804407.ch33. DOI: https://doi.org/10.1002/9781118804407.ch33
- P. Palacios, A. Bustamante, P. Romero-Gómez, and J. González, "Kinetic study of the thermal transformation of limonite to hematite by X-ray diffraction, μ-Raman and Mössbauer spectroscopy," Hyperfine Interact, vol. 203 (1-3), pp. 113-118, Nov. 2011. DOI: http://doi.org/10.1007/s10751-011-0352-2. DOI: https://doi.org/10.1007/s10751-011-0352-2
- K. Ionkov, S. Gaydardzhiev, D. Bastin, A. Correa, and M. Lacoste, "Removal of phosphorous through roasting of oolitic iron ore with alkaline earth additives," in XXVI International Mineral Processing Congress, New Delhi, 2012, pp. 2194-2205.
- J. Li, K. Bunney, H. Watling, and D. Robinson, "Thermal pre-treatment of refractory limonite ores to enhance the extraction of nickel and cobalt under heap leaching conditions," Minerals Engineering, vol. 41, pp. 71-78, Feb. 2013. DOI: http://doi.org/10.1016/j.mineng.2012.11.002. DOI: https://doi.org/10.1016/j.mineng.2012.11.002
- E. Núñez, E. Jaimes, and J. Castillo, "Reducibility and mineralogy types of the fine iron ore for fluid bed direct reduction process," in 5th IAS Ironmaking Conference, San Nicolás, Argentina, 2005, pp. 267-276.
- Gariglio E., Oliveira D., Mafra W., Silva C., and Correa D., "Evaluation of iron ore value in use for DR/EAF processes – CVRD experience," in 5th IAS Ironmaking Conference, San Nicolás, Argentina, 2005, pp. 277-285.
- K. Jang, V. Nunna, S. Hapugoda, A. Nguyen, and W. Bruckard, "Chemical and mineral transformation of a low grade goethite ore by dehydroxylation, reduction roasting and magnetic separation," Minerals Engineering, vol. 60, pp. 14-22, Jun. 2014. DOI: http://doir.org/10.1016/j.mineng.2014.01.021. DOI: https://doi.org/10.1016/j.mineng.2014.01.021
- R. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd ed. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co, 2003. DOI: https://doi.org/10.1002/3527602097
- I. Mitov, D. Paneva, and B. Kunev, "Comparative study of the thermal decomposition of iron oxyhydroxides," Thermochimica Acta, vol. 386 (2), pp. 179-188, Apr. 2002. DOI: http://doi.org/10.1016/S0040-6031(01)00808-5. DOI: https://doi.org/10.1016/S0040-6031(01)00808-5
- F. Honglei, S. Baozhen, and L. Qiaoxia, "Thermal behavior of goethite during transformation to hematite," Materials Chemistry and Physics, vol. 98 (1), pp. 148-153, Jul. 2006. DOI: http://doi.org/10.1016/j.matchemphys.2005.09.005. DOI: https://doi.org/10.1016/j.matchemphys.2005.09.005
- V. Balek and J. Subrt, "Thermal behaviour of iron(III) oxide hydroxides," Pure and Applied Chemistry, vol. 67 (11), pp. 1839-1842, Jan. 1995. DOI: http://doi.org/10.1351/pac199567111839. DOI: https://doi.org/10.1351/pac199567111839
- J. Boily, J. Szanyi, and A. Felmy, "A combined FTIR and TPD study on the bulk and surface dehydroxylation and decarbonation of synthetic goethite," Geochimica et Cosmochimica Acta, vol. 70 (14), pp. 3613-3624, Jul. 2006. DOI: http://doi.org/10.1016/j.gca.2006.05.013. DOI: https://doi.org/10.1016/j.gca.2006.05.013
- Y. Cudennec and A. Lecerf, "Topotactic transformations of goethite and lepidocrocite into hematite and maghemite," Solid State Sciences, vol. 7 (5), pp. 520-529, May. 2005. DOI: http://doi.org/10.1016/j.solidstatesciences.2005.02.002. DOI: https://doi.org/10.1016/j.solidstatesciences.2005.02.002
- H. Ruan, R. Frost, and J. Kloprogge, "The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 57 (13), pp. 2575-2586, Nov. 2001. DOI: http://doi.org/10.1016/S1386-1425(01)00445-0. DOI: https://doi.org/10.1016/S1386-1425(01)00445-0
- M. Landers and R. Gilkes, "Dehydroxylation and dissolution of nickeliferous goethite in New Caledonian lateritic Ni ore," Applied Clay Science, vol. 35 (3-4), pp. 162-172, Feb. 2007. DOI: http://doi.org/10.1016/j.clay.2006.08.012. DOI: https://doi.org/10.1016/j.clay.2006.08.012
- E. Wolska, "Relations between the existence of hydroxyl ions in the anionic sublattice of hematite and its infrared and X-ray characteristics," Solid State Ionics, vol. 28-30 (2), pp. 1349-1351, Sep. 1988. DOI: http://doi.org/10.1016/0167-2738(88)90385-2. DOI: https://doi.org/10.1016/0167-2738(88)90385-2
- H. Ruan, R. Frost, J. Kloprogge, and L. Duong, "Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite," Spectrochim Acta A Mol Biomol Spectrosc, vol. 58 (5), pp. 967-981, Mar. 2002. DOI: https://doi.org/10.1016/S1386-1425(01)00574-1
- P. Prasad, K. Shiva, V. Krishna, K. Babu, B. Sreedhar, and S. Ramana,"In situ FTIR study on the dehydration of natural goethite," Journal of Asian Earth Sciences, vol. 27 (4), pp. 503-511, Sep. 2006. DOI: http://doi.org/10.1016/j.jseaes.2005.05.005. DOI: https://doi.org/10.1016/j.jseaes.2005.05.005