Skip to main navigation menu Skip to main content Skip to site footer

Structural, elastic, electronic and thermal properties of InAs: A study of functional density

Abstract

In this research, first-principles calculations were carried out within the density functional theory (DFT) framework, using LDA and GGA, in order to study the structural, elastic, electronic and thermal properties of InAs in the zinc-blende structure. The results of the structural properties (a, B0, ) agree with the theoretical and experimental results reported by other authors. Additionally, the elastic properties, the elastic constants (C11, C12 and C44), the anisotropy coefficient (A) and the predicted speeds of the sound ( , , and ) are in agreement with the results reported by other authors. In contrast, the shear modulus (G), the Young's modulus (Y) and the Poisson's ratio (v) show some discrepancy with respect to the experimental values, although, the values obtained are reasonable. On the other hand, it is evident the tendency of the LDA and GGA approaches to underestimate the value of the band-gap energy in semiconductors. The thermal properties (V, , θD yCV) of InAs, calculated using the quasi-harmonic Debye model, are slightly sensitive as the temperature increases. According to the stability criteria and the negative value of the enthalpy of formation, InAs is mechanically and thermodynamically stable. Therefore, this work can be used as a future reference for theoretical and experimental studies based on InAs.

Keywords

Density functional theory, InAs, Semiconductors, Structural parameter, Thermal properties

PDF XML

References

  1. A. Mujica, A. Rubio, A. Muñoz, and R. J. Needs, “High-pressure phases of group-IV, III–V, and II–VI compounds,” Rev. Mod. Phys, vol. 75 (3), pp. 863-912, Jul. 2003. DOI: http://doi.org/10.1103/RevModPhys.75.863. DOI: https://doi.org/10.1103/RevModPhys.75.863
  2. K. Seung-Hwan, and S. L. Sheng, “Theoretical investigation of InAs/GaInSb type-II superlattice infrared detectors for longwavelength and very longwavelength infrared applications,” Physica E., vol. 16 (2), pp. 199-208, Feb. 2003. DOI: http://doi.org/10.1016/S1386-9477(02)00667-7. DOI: https://doi.org/10.1016/S1386-9477(02)00667-7
  3. R. Ahmed, S. J. Hashemifar, H. Akbarzadeh, M. Ahmed, and Fazal-e-Aleem, “Ab initio study of structural and electronic properties of III-arsenide binary compounds,” Comp Mat Sci, vol. 39 (3), pp. 580-586, May. 2007. DOI: http://doi.org/10.1016/j.commatsci.2006.08.014. DOI: https://doi.org/10.1016/j.commatsci.2006.08.014
  4. D. R. Lide, Handbook of Chemistry and Physics, Boca Raton FL: CRC Press, 87th ed, 1998.
  5. Landolt-Börnstein, “Semiconductors, Physics of Group IV Elements and III-V Compounds,” New Series, Group III, vol. 17, edited by O. Madelung, M. Schulz, and H. Weiss, Springer-Verlag, New York, 1982.
  6. D. Gerlich, “Elastic Constants of Single-Crystal Indium Arsenide,” J. Appl. Phys., vol. 34 (9), pp. 2915-2919, Sep. 1963. DOI: http://doi.org/10.1063/1.1729833. DOI: https://doi.org/10.1063/1.1729833
  7. M. Kocher, A. Jain, S. Ping-Ong, and G. Hautier, “Materials Project structure optimization”. Available in: http://materialsproject.org/materials/mp-20305/.
  8. E. S. Penev, “On the theory of surface diffusion in InAs/GaAs (001) Heteroepitaxy,” Technischen Universitat Berlin, 2002.
  9. S. W. Ellaway, and D. A. Faux, “On the elastic properties of InAs under hydrostatic pressure”, Phys. Stat. Sol. (b)., vol. 235 (2), pp. 437-440, Feb. 2003. DOI: http://doi.org/10.1002/pssb.200301598. DOI: https://doi.org/10.1002/pssb.200301598
  10. L. Louail, D. Maouche, and A. Hachemi, “Elastic properties of InAs under pressure up to 18 GPa,” Mater. Lett., vol. 60 (27), pp. 3269-3271, Nov. 2006. DOI: http://doi.org/10.1016/j.matlet.2006.03.011. DOI: https://doi.org/10.1016/j.matlet.2006.03.011
  11. Ioffe Physical Technical Institute, “Semiconductors on NSM”. Available in: http://www.ioffe.rssi.ru/SVA/NSM/Semicond/.
  12. J. P. Perdew, and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B., vol. 23, pp. 5048-5079, 1981. DOI: http://doi.org/10.1103/PhysRevB.23.5048. DOI: https://doi.org/10.1103/PhysRevB.23.5048
  13. J. P. Perdew, K. Burke, and M. Emzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 77, pp. 3865-3868, Oct. 1996. DOI: http://doi.org/10.1103/PhysRevLett.77.3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865
  14. P. E. Blochl, “Projector augmented-wave method,” Phys. Rev. B., vol. 50, pp. 17953-17979, Dec. 1994. DOI: http://doi.org/10.1103/PhysRevB.50.17953. DOI: https://doi.org/10.1103/PhysRevB.50.17953
  15. G. Kresse, and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented wave method,” Phys. Rev. B., vol. 59, pp. 1758-1775, Dec. 1999. DOI: http://doi.org/10.1103/PhysRevB.59.1758. DOI: https://doi.org/10.1103/PhysRevB.59.1758
  16. G. Kresse, and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci., vol. 6, pp. 15-50, 1996. DOI: http://doi.org/10.1016/0927-0256(96)00008-0. DOI: https://doi.org/10.1016/0927-0256(96)00008-0
  17. G. Kresse, and J. Furthmüller, “Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set,” Phys. Rev. B., vol. 54, pp. 11169-11186, 1996. DOI: http://doi.org/10.1103/PhysRevB.54.11169. DOI: https://doi.org/10.1103/PhysRevB.54.11169
  18. A. Otero-de-la-Roza, and V. Luaña, “Gibbs2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data,” Comput. Phys. Commun., vol. 182 (8), pp. 1708-1720, Aug. 2011. DOI: http://doi.org/10.1016/j.cpc.2011.04.016. DOI: https://doi.org/10.1016/j.cpc.2011.04.016
  19. A. Otero-de-la-Roza, and V. Luaña, “Equations of state and thermodynamics of solids using empirical corrections in the quasiharmonic approximation,” Phys. Rev. B., vol. 84, pp. 184103(1)-184103(20), 2011. DOI: https://doi.org/10.1103/PhysRevB.84.184103
  20. F. D. Murnaghan, “The compressibility of media under extreme pressures,” Proc. Natl. Acad. Sci., vol. 30 (9), pp. 244-247, Sep. 1944. DOI: http://doi.org/10.1073/pnas.30.9.244. DOI: https://doi.org/10.1073/pnas.30.9.244
  21. G. V. Ozolin’sh, G. K. Averkieva, A. F. Levin’sh, and N. A. Goryunova, “Investigation of Gallium and Indium Antimonides,” Sov. Phys. Crystallogr., vol. 7, pp. 691, 1963.
  22. P. E. Van Camp, V. E. Van Doren, and J. T. Devreese, “Pressure dependence of the electronic properties of cubic III-V In compounds,” Phys. Rev. B., vol. 41 (3), pp. 1598-1602, Jun. 1990. DOI: http://doi.org/10.1103/PhysRevB.41.1598. DOI: https://doi.org/10.1103/PhysRevB.41.1598
  23. K. Yamaguchi, Y. Takeda, K. Kameda, and K. Itagaki, “Measurements of Heat of Formation of GaP, InP, GaAs, InAs, GaSb and InSb,” Mater. Trans., JIM, vol. 35 (9), pp. 596-602, 1994. DOI: http://doi.org/10.2320/matertrans1989.35.596. DOI: https://doi.org/10.2320/matertrans1989.35.596
  24. S. Adachi, Properties of group-IV, III – V and II – VI semiconductors, John Wiley & Sons Ltd, 2005. DOI: http://doi.org/10.1002/0470090340. DOI: https://doi.org/10.1002/0470090340
  25. T. Uesugi, Y. Takigawa, and K. Higashi, “Elastic Constants of AlLi from First Principles,” Mater. Trans., vol. 46 (6), pp. 1117-1121, 2005. DOI: http://doi.org/10.2320/matertrans.46.1117. DOI: https://doi.org/10.2320/matertrans.46.1117
  26. H. Fu, D. Li, F. Peng, T. Gao, and X. Cheng, “Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures,” Comput. Mater. Sci., vol. 44 (2), pp. 774-778, Dec. 2008. DOI: http://doi.org/10.1016/j.commatsci.2008.05.026. DOI: https://doi.org/10.1016/j.commatsci.2008.05.026
  27. R. Hill, “The Elastic Behaviour of a Crystalline Aggregate,” Proc. Phys. Soc. A., vol. 65 (389), pp. 349-399, 1952. DOI: http://doi.org/10.1088/0370-1298/65/5/307. DOI: https://doi.org/10.1088/0370-1298/65/5/307
  28. L. O. Anderson, “A simplified method for calculating the debye temperature from elastic constants,” J. Phys. Chem. Solids., vol. 24 (7), pp. 909-917, Jul. 1963. DOI: http://doi.org/10.1016/0022-3697(63)90067-2. DOI: https://doi.org/10.1016/0022-3697(63)90067-2
  29. K. Kuriyama, and S. Saito, “Elastic constants of single-crystal lithium indium,” Phys. Rev. B., vol. 13 (4), pp. 1528–1531, Feb. 1976. DOI: http://doi.org/10.1103/PhysRevB.13.1528. DOI: https://doi.org/10.1103/PhysRevB.13.1528
  30. K. Kuriyama, S. Saito, and K. Iwamura, “Ultrasonic study on the elastic moduli of the NaTl (B32) structure,” J. Phys. Chem. Solids., vol. 40 (6), pp. 457-461, Jan. 1979. DOI: http://doi.org/10.1016/0022-3697(79)90062-3. DOI: https://doi.org/10.1016/0022-3697(79)90062-3
  31. N. G. Einspruch, and R. J. Manning, “Elastic Constants of Compound Semiconductors ZnS, PbTe, GaSb,” J. Acoust. Soc. Am., vol. 35 (2), pp. 215-216, Feb. 1963. DOI: http://doi.org/10.1121/1.1918434. DOI: https://doi.org/10.1121/1.1918434
  32. H. M. Ayedh, and A. Wacker, “Acoustic Phonons in Nanowires with Embedded Heterostructures,” J. Nanomater, vol. 2011, Article ID 743846, 2011. DOI: http://doi.org/10.1155/2011/743846. DOI: https://doi.org/10.1155/2011/743846
  33. F. Tran, and P. Blaha, “Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential,” Phys. Rev. Lett., vol. 102, pp. 226404 (4pp), 2009. DOI: https://doi.org/10.1103/PhysRevLett.102.226401
  34. A. Haddou, H. Khachai, R. Khenata, F. Litimein, A. Bouhemadou, G. Murtaza, Z. Alahmed, S. Bin-Omran, and B. Abbar, “Elastic, optoelectronic, and thermal properties of cubic CSi2N4: an ab initio study,” J. Mater. Sci., vol. 48 (23), pp. 8235-8243, Dec. 2013. DOI: http://doi.org/10.1007/s10853-013-7636-7. DOI: https://doi.org/10.1007/s10853-013-7636-7
  35. W. López-Pérez, P. Castro-Diago, L. Ramírez-Montes, A. González-García, and R. González-Hernández, “Effects of scandium composition on the structural, electronic, and thermodynamic properties of SCxY1–x metallic alloys,” Philos. Mag, vol. 96 (5), pp. 498-510, Feb. 2016. DOI: http://doi.org/10.1080/14786435.2016.1140915. DOI: https://doi.org/10.1080/14786435.2016.1140915
  36. C. Kittel, “Introduction to solid state physics,” New York, John Wiley & Sons, Inc., 7th ed., 1996.

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.