Structural, elastic, electronic and thermal properties of InAs: A study of functional density
Abstract
In this research, first-principles calculations were carried out within the density functional theory (DFT) framework, using LDA and GGA, in order to study the structural, elastic, electronic and thermal properties of InAs in the zinc-blende structure. The results of the structural properties (a, B0, ) agree with the theoretical and experimental results reported by other authors. Additionally, the elastic properties, the elastic constants (C11, C12 and C44), the anisotropy coefficient (A) and the predicted speeds of the sound ( , , and ) are in agreement with the results reported by other authors. In contrast, the shear modulus (G), the Young's modulus (Y) and the Poisson's ratio (v) show some discrepancy with respect to the experimental values, although, the values obtained are reasonable. On the other hand, it is evident the tendency of the LDA and GGA approaches to underestimate the value of the band-gap energy in semiconductors. The thermal properties (V, , θD yCV) of InAs, calculated using the quasi-harmonic Debye model, are slightly sensitive as the temperature increases. According to the stability criteria and the negative value of the enthalpy of formation, InAs is mechanically and thermodynamically stable. Therefore, this work can be used as a future reference for theoretical and experimental studies based on InAs.
Keywords
Density functional theory, InAs, Semiconductors, Structural parameter, Thermal properties
References
- A. Mujica, A. Rubio, A. Muñoz, and R. J. Needs, “High-pressure phases of group-IV, III–V, and II–VI compounds,” Rev. Mod. Phys, vol. 75 (3), pp. 863-912, Jul. 2003. DOI: http://doi.org/10.1103/RevModPhys.75.863. DOI: https://doi.org/10.1103/RevModPhys.75.863
- K. Seung-Hwan, and S. L. Sheng, “Theoretical investigation of InAs/GaInSb type-II superlattice infrared detectors for longwavelength and very longwavelength infrared applications,” Physica E., vol. 16 (2), pp. 199-208, Feb. 2003. DOI: http://doi.org/10.1016/S1386-9477(02)00667-7. DOI: https://doi.org/10.1016/S1386-9477(02)00667-7
- R. Ahmed, S. J. Hashemifar, H. Akbarzadeh, M. Ahmed, and Fazal-e-Aleem, “Ab initio study of structural and electronic properties of III-arsenide binary compounds,” Comp Mat Sci, vol. 39 (3), pp. 580-586, May. 2007. DOI: http://doi.org/10.1016/j.commatsci.2006.08.014. DOI: https://doi.org/10.1016/j.commatsci.2006.08.014
- D. R. Lide, Handbook of Chemistry and Physics, Boca Raton FL: CRC Press, 87th ed, 1998.
- Landolt-Börnstein, “Semiconductors, Physics of Group IV Elements and III-V Compounds,” New Series, Group III, vol. 17, edited by O. Madelung, M. Schulz, and H. Weiss, Springer-Verlag, New York, 1982.
- D. Gerlich, “Elastic Constants of Single-Crystal Indium Arsenide,” J. Appl. Phys., vol. 34 (9), pp. 2915-2919, Sep. 1963. DOI: http://doi.org/10.1063/1.1729833. DOI: https://doi.org/10.1063/1.1729833
- M. Kocher, A. Jain, S. Ping-Ong, and G. Hautier, “Materials Project structure optimization”. Available in: http://materialsproject.org/materials/mp-20305/.
- E. S. Penev, “On the theory of surface diffusion in InAs/GaAs (001) Heteroepitaxy,” Technischen Universitat Berlin, 2002.
- S. W. Ellaway, and D. A. Faux, “On the elastic properties of InAs under hydrostatic pressure”, Phys. Stat. Sol. (b)., vol. 235 (2), pp. 437-440, Feb. 2003. DOI: http://doi.org/10.1002/pssb.200301598. DOI: https://doi.org/10.1002/pssb.200301598
- L. Louail, D. Maouche, and A. Hachemi, “Elastic properties of InAs under pressure up to 18 GPa,” Mater. Lett., vol. 60 (27), pp. 3269-3271, Nov. 2006. DOI: http://doi.org/10.1016/j.matlet.2006.03.011. DOI: https://doi.org/10.1016/j.matlet.2006.03.011
- Ioffe Physical Technical Institute, “Semiconductors on NSM”. Available in: http://www.ioffe.rssi.ru/SVA/NSM/Semicond/.
- J. P. Perdew, and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B., vol. 23, pp. 5048-5079, 1981. DOI: http://doi.org/10.1103/PhysRevB.23.5048. DOI: https://doi.org/10.1103/PhysRevB.23.5048
- J. P. Perdew, K. Burke, and M. Emzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 77, pp. 3865-3868, Oct. 1996. DOI: http://doi.org/10.1103/PhysRevLett.77.3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865
- P. E. Blochl, “Projector augmented-wave method,” Phys. Rev. B., vol. 50, pp. 17953-17979, Dec. 1994. DOI: http://doi.org/10.1103/PhysRevB.50.17953. DOI: https://doi.org/10.1103/PhysRevB.50.17953
- G. Kresse, and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented wave method,” Phys. Rev. B., vol. 59, pp. 1758-1775, Dec. 1999. DOI: http://doi.org/10.1103/PhysRevB.59.1758. DOI: https://doi.org/10.1103/PhysRevB.59.1758
- G. Kresse, and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci., vol. 6, pp. 15-50, 1996. DOI: http://doi.org/10.1016/0927-0256(96)00008-0. DOI: https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, and J. Furthmüller, “Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set,” Phys. Rev. B., vol. 54, pp. 11169-11186, 1996. DOI: http://doi.org/10.1103/PhysRevB.54.11169. DOI: https://doi.org/10.1103/PhysRevB.54.11169
- A. Otero-de-la-Roza, and V. Luaña, “Gibbs2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data,” Comput. Phys. Commun., vol. 182 (8), pp. 1708-1720, Aug. 2011. DOI: http://doi.org/10.1016/j.cpc.2011.04.016. DOI: https://doi.org/10.1016/j.cpc.2011.04.016
- A. Otero-de-la-Roza, and V. Luaña, “Equations of state and thermodynamics of solids using empirical corrections in the quasiharmonic approximation,” Phys. Rev. B., vol. 84, pp. 184103(1)-184103(20), 2011. DOI: https://doi.org/10.1103/PhysRevB.84.184103
- F. D. Murnaghan, “The compressibility of media under extreme pressures,” Proc. Natl. Acad. Sci., vol. 30 (9), pp. 244-247, Sep. 1944. DOI: http://doi.org/10.1073/pnas.30.9.244. DOI: https://doi.org/10.1073/pnas.30.9.244
- G. V. Ozolin’sh, G. K. Averkieva, A. F. Levin’sh, and N. A. Goryunova, “Investigation of Gallium and Indium Antimonides,” Sov. Phys. Crystallogr., vol. 7, pp. 691, 1963.
- P. E. Van Camp, V. E. Van Doren, and J. T. Devreese, “Pressure dependence of the electronic properties of cubic III-V In compounds,” Phys. Rev. B., vol. 41 (3), pp. 1598-1602, Jun. 1990. DOI: http://doi.org/10.1103/PhysRevB.41.1598. DOI: https://doi.org/10.1103/PhysRevB.41.1598
- K. Yamaguchi, Y. Takeda, K. Kameda, and K. Itagaki, “Measurements of Heat of Formation of GaP, InP, GaAs, InAs, GaSb and InSb,” Mater. Trans., JIM, vol. 35 (9), pp. 596-602, 1994. DOI: http://doi.org/10.2320/matertrans1989.35.596. DOI: https://doi.org/10.2320/matertrans1989.35.596
- S. Adachi, Properties of group-IV, III – V and II – VI semiconductors, John Wiley & Sons Ltd, 2005. DOI: http://doi.org/10.1002/0470090340. DOI: https://doi.org/10.1002/0470090340
- T. Uesugi, Y. Takigawa, and K. Higashi, “Elastic Constants of AlLi from First Principles,” Mater. Trans., vol. 46 (6), pp. 1117-1121, 2005. DOI: http://doi.org/10.2320/matertrans.46.1117. DOI: https://doi.org/10.2320/matertrans.46.1117
- H. Fu, D. Li, F. Peng, T. Gao, and X. Cheng, “Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures,” Comput. Mater. Sci., vol. 44 (2), pp. 774-778, Dec. 2008. DOI: http://doi.org/10.1016/j.commatsci.2008.05.026. DOI: https://doi.org/10.1016/j.commatsci.2008.05.026
- R. Hill, “The Elastic Behaviour of a Crystalline Aggregate,” Proc. Phys. Soc. A., vol. 65 (389), pp. 349-399, 1952. DOI: http://doi.org/10.1088/0370-1298/65/5/307. DOI: https://doi.org/10.1088/0370-1298/65/5/307
- L. O. Anderson, “A simplified method for calculating the debye temperature from elastic constants,” J. Phys. Chem. Solids., vol. 24 (7), pp. 909-917, Jul. 1963. DOI: http://doi.org/10.1016/0022-3697(63)90067-2. DOI: https://doi.org/10.1016/0022-3697(63)90067-2
- K. Kuriyama, and S. Saito, “Elastic constants of single-crystal lithium indium,” Phys. Rev. B., vol. 13 (4), pp. 1528–1531, Feb. 1976. DOI: http://doi.org/10.1103/PhysRevB.13.1528. DOI: https://doi.org/10.1103/PhysRevB.13.1528
- K. Kuriyama, S. Saito, and K. Iwamura, “Ultrasonic study on the elastic moduli of the NaTl (B32) structure,” J. Phys. Chem. Solids., vol. 40 (6), pp. 457-461, Jan. 1979. DOI: http://doi.org/10.1016/0022-3697(79)90062-3. DOI: https://doi.org/10.1016/0022-3697(79)90062-3
- N. G. Einspruch, and R. J. Manning, “Elastic Constants of Compound Semiconductors ZnS, PbTe, GaSb,” J. Acoust. Soc. Am., vol. 35 (2), pp. 215-216, Feb. 1963. DOI: http://doi.org/10.1121/1.1918434. DOI: https://doi.org/10.1121/1.1918434
- H. M. Ayedh, and A. Wacker, “Acoustic Phonons in Nanowires with Embedded Heterostructures,” J. Nanomater, vol. 2011, Article ID 743846, 2011. DOI: http://doi.org/10.1155/2011/743846. DOI: https://doi.org/10.1155/2011/743846
- F. Tran, and P. Blaha, “Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential,” Phys. Rev. Lett., vol. 102, pp. 226404 (4pp), 2009. DOI: https://doi.org/10.1103/PhysRevLett.102.226401
- A. Haddou, H. Khachai, R. Khenata, F. Litimein, A. Bouhemadou, G. Murtaza, Z. Alahmed, S. Bin-Omran, and B. Abbar, “Elastic, optoelectronic, and thermal properties of cubic CSi2N4: an ab initio study,” J. Mater. Sci., vol. 48 (23), pp. 8235-8243, Dec. 2013. DOI: http://doi.org/10.1007/s10853-013-7636-7. DOI: https://doi.org/10.1007/s10853-013-7636-7
- W. López-Pérez, P. Castro-Diago, L. Ramírez-Montes, A. González-García, and R. González-Hernández, “Effects of scandium composition on the structural, electronic, and thermodynamic properties of SCxY1–x metallic alloys,” Philos. Mag, vol. 96 (5), pp. 498-510, Feb. 2016. DOI: http://doi.org/10.1080/14786435.2016.1140915. DOI: https://doi.org/10.1080/14786435.2016.1140915
- C. Kittel, “Introduction to solid state physics,” New York, John Wiley & Sons, Inc., 7th ed., 1996.