Implementation of a Service-Oriented Architecture for Applications in Physical Rehabilitation

Main Article Content


John Alexander Camacho
Cristian David Chamorro
John Alexander Sanabria
Nayiver Gladys Caicedo
José Isidro García


Currently, the interest in service-oriented architectures (SOA) has risen due to their structural flexibility, which allows to obtain features such as scalability, fault tolerance, low coupling, and easy integration, among others. In this context, this article presents the implementation of a SOA for tele-operated physical rehabilitation applications; this SOA ensures an effective orchestration of services, adding special functions, such as synchronous tele-operation of machines for physical rehabilitation, in such a way that it can be adapted and implemented by using information and communication technologies (ICT). The implementation of the architecture was validated by means of a test that allowed to analyze the behavior of the web services defined for the application.


Article Details


All articles included in the Revista Facultad de Ingeniería are published under the Creative Commons (BY) license.

Authors must complete, sign, and submit the Review and Publication Authorization Form of the manuscript provided by the Journal; this form should contain all the originality and copyright information of the manuscript.

The authors who publish in this Journal accept the following conditions:

a. The authors retain the copyright and transfer the right of the first publication to the journal, with the work registered under the Creative Commons attribution license, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this Journal.

b. Authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly indicate that the work It was first published in this Journal.

c. Authors are allowed and recommended to publish their work on the Internet (for example on institutional or personal pages) before and during the process.
review and publication, as it can lead to productive exchanges and a greater and faster dissemination of published work.

d. The Journal authorizes the total or partial reproduction of the content of the publication, as long as the source is cited, that is, the name of the Journal, name of the author (s), year, volume, publication number and pages of the article.

e. The ideas and statements issued by the authors are their responsibility and in no case bind the Journal.


W. W. Dai, V. Vyatkin, and J. H. Christensen, “The application of service-oriented architectures in distributed automation systems,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 252-257, 2014. DOI:

E. Demin, S. Patil, V. Dubinin, and V. Vyatkin, “IEC 61499 distributed control enhanced with cloud-based web-services,” in Proc. 2015 10th IEEE Conf. Ind. Electron. Appl. ICIEA 2015, pp. 972-977, 2015. DOI:

R. Gazzarata, F. Vergari, T. S. Cinotti, and M. Giacomini, “A standardized SOA for clinical data interchange in a cardiac telemonitoring environment,” IEEE J. Biomed. Heal. Informatics, vol. 18 (6), pp. 1764-1774, 2014. DOI:

J. Eliasson, J. Delsing, H. Derhamy, Z. Salcic, and K. Wang, “Towards industrial Internet of Things: An efficient and interoperable communication framework,” in 2015 IEEE International Conference on Industrial Technology (ICIT). pp. 2198-2204, 2015. DOI:

O. Chenaru, A. Stanciu, D. Popescu, V. Sima, G. Florea, and R. Dobrescu, “Open cloud solution for integrating advanced process control in plant operation,” in 2015 23rd Mediterranean Conference on Control and Automation (MED). pp. 973-978, 2015. DOI:

J. U. Meyer, “Open SOA health web platform for mobile medical apps: Connecting securely mobile devices with distributed electronic health records and medical systems,” in 19th IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA 2014, 2014. DOI:

M. B. Doumbouya, B. Kamsu-Foguem, H. Kenfack, and C. Foguem, “Telemedicine using mobile telecommunication: Towards syntactic interoperability in teleexpertise,” Telemat. Informatics, vol. 31 (4), pp. 648-659, 2014. DOI:

“CPM de rodilla OptiFlex® 3.” [Online]. Available: [Accessed: 31-Jul-2017].

“Flex-Mate K500.” [Online]. Available: [Accessed: 31-Jul-2017].

“Artromot-K3.” [Online]. Available: [Accessed: 31-Jul-2017].

“CPM • Continuous Passive Motion : Spectra.” [Online]. Available: [Accessed: 31-Jul-2017].

F. Morales, “Puntos clave en la rehabilitación de rodilla - Artículo de Fisioterapia.” [Online]. Available: [Accessed: 31-Jul-2017].

G. Caicedo, and J. I. García, “Diseño y construcción de una unidad de rehabilitación de hombro tele-operada que integra requerimientos de diseño interdisciplinares,” Convoc. interna para la Conform. del banco Proy. Investig. Convoc. 3-2014, 2014.

J. I. García, and G. Caicedo, “Diseño y construcción de una unidad de rehabilitación de rodilla para ser tele-operada que integra requerimientos de diseño interdisciplinares,” Convoc. interna para la Conform. del banco Proy. Investig. Convoc. 3-2014, 2014.


Download data is not yet available.