Urban, Agricultural and Livestock Residues in the Context of Biorefineries

Authors

DOI:

https://doi.org/10.19053/01211129.v28.n53.2019.9705

Keywords:

composition, design, production, sustainable development, waste treatment

Abstract

The generation of waste is increasing globally and its poor utilization causes serious environmental, economic and social issues. The aim of this work was to analyze the state of the art on urban, agricultural and livestock solid waste in terms of quantity and composition, as well as to analyze the concept of biorefineries from the viewpoint of their design as a sustainable alternative for the use of residual raw materials. The information was consulted in different databases such as Web of Science, Scopus, and Google Scholar. The analysis of the information identified that the residues are produced in considerable amounts and have valuable organic compounds, which are used to a greater or lesser extent according to technological, cultural, and socio-economic factors in each specific region. New policies are needed for the integral management of solid waste that integrates the concept of biorefineries from the generation and separation at the source to its utilization and final disposal. The proper implementation of physical, thermochemical, chemical, and biological processes under the concept of biorefineries can recover or transform in an integral way the residual raw materials to obtain products such as biofuels, food, and energy. Designing biorefineries to determine their viability for waste utilization is required. Exploring this type of alternatives by evaluating different factors (techno-economic, environmental, and social) may support the decision making of investment and research in utilization technologies to be implemented on a small or large scale in regions of Colombia and the world with great waste availability.

Downloads

Download data is not yet available.

References

[1] D. Hoornweg, and P. Bhada-Tata, "What a Waste. A Global Review of Solid Waste Management," 2012. Available at: http://siteresources.worldbank.org/INTURBANDEVELOPMENT/Resources/336387-1334852610766/What_a_Waste2012_Final.pdf.

[2] Waste, "Waste Atlas," 2019. Available at: http://www.atlas.d-waste.com/.

[3] J. F. Rojas, "Colombia entierra millones de pesos por no reciclar," El Colombiano, 2017. Available at: http://www.elcolombiano.com/especiales/que-hacer-con-la-basura/colombia-entierra-millones-de-pesos-por-no-reciclar-FD3410601.

[4] DNP, "Disposición final de residuos sólidos. Informe nacional 2016," 2016. Available at: http://www.superservicios.gov.co/content/download/23144/187347.

[5] M. Mazzeo, F. Díaz, and L. Mejía, Aprovechamiento de Residuos de Cosecha y Poscosecha del Plátano. Colombia: Universidad de Caldas, 2015.

[6] J. Roberts, A. Cassula, P. Osvaldo, R. Dias, and J. Balestieri, "Assessment of dry residual biomass potential for use as alternative energy source in the party of General Pueyrredón, Argentina," Renewable and Sustainable Energy Reviews, vol. 41, pp. 568-583, 2015. https://doi.org/10.1016/j.rser.2014.08.066.

[7] IEA Bioenergy, "Bio-based Chemicals: Value Added Products from Biorefineries," 2012. Available at: http://www.ieabioenergy.com/publications/bio-based-chemicals-value-added-products-from-biorefineries/.

[8] R. Julio, J. Albet, C. Vialle, C. Vaca, and C. Sablayrolles, "Sustainable design of biorefinery processes: existing practices and new methodology," Biofuels, Bioproducts and Biorefining, vol. 11 (2), pp. 373-395, 2017. https://doi.org/10.1002/bbb.1749.

[9] IEA Bioenergy, "Biorefineries: adding value to the sustainable utilisation of biomasa," 2009. Available at: http://www.ieabioenergy.com/wp-content/uploads/2013/10/Task-42-Booklet.pdf.

[10] ICONTEC, Guía Técnica GTC 53-7. Aprovechamiento de Residuos Sólidos Orgánicos No Peligrosos. Bogotá, 2006.

[11] S. Sikdar, "Sustainable development and sustainability metrics," AIChE Journal, vol. 49 (8), pp. 1928-1932, 2003. https://doi.org/10.1002/aic.690490802.

[12] D. Ng, "Automated targeting for the synthesis of an integrated biorefinery," Chemical Engineering Journal, vol. 162 (1), pp. 67-74, 2010. https://doi.org/10.1016/j.cej.2010.04.061.

[13] F. Gírio, S. Marques, F. Pinto, A. Oliveira, P. Costa, A. Reis, and P. Moura, "Biorefineries in the World," Biorefineries. Targeting Energy, High Value Products and Waste Valorisation. Suiza: Springer, 2017, pp. 227-278.

[14] RFA, "World fuel ethanol production," 2019. Available at: http://www.ethanolrfa.org/resources/industry/statistics/#1454099103927-61e598f7-7643.

[15] A. Demirbaş, Biorefineries For Biomass Upgrading Facilities. Reino Unido: Springer, 2010.

[16] EurObserv'ER, "Biofuels barometer 2015," 2015. Available at: https://www.eurobserv-er.org/biofuels-barometer-2015/.

[17] J. Moncada, V. Aristizábal, and C. Cardona, "Design strategies for sustainable biorefineries," Biochemical Engineering Journal, vol. 116 (Supp. C), pp. 122-134, 2016. https://doi.org/10.1016/j.bej.2016.06.009.

[18] Fedebiocombustibles, "Estadísticas. Alcohol carburante (etanol) y biodiesel," 2019. Available at: http://www.fedebiocombustibles.com/.

[19] Ellen Macarthur Foundation, "Towards the circular economy," 2013. Available at: https://www.ellenmacarthurfoundation.org/assets/downloads/publications/Ellen-MacArthur-Foundation-Towards-the-Circular-Economy-vol.1.pdf.

[20] J. Arango, C. Collazos, F. Gutiérrez Vela, and L. Castillo, "A systematic review of geolocated pervasive games: A perspective from game development methodologies, software metrics and linked open data," Design, User Experience, and Usability: Designing Pleasurable Experiences. Canadá : Springer, 2017, pp. 335-346.

[21] J. Pérez, and L. Muñoz, "What can't be ignored in service quality evaluation: Application contexts, tools and factors," Revista Facultad de Ingeniería Universidad de Antioquia, vol. 72 pp. 145-160, 2014.

[22] X. Wen, Q. Luo, H. Hu, N. Wang, Y. Chen, J. Jin, Y. Hao, G. Xu, F. Li, and W. Fang, "Comparison research on waste classification between China and the EU, Japan, and the USA," Journal of Material Cycles and Waste Management, vol. 16 (2), pp. 321-334, 2014. https://doi.org/10.1007/s10163-013-0190-1.

[23] EPA, "Resource Conservation and Recovery Act (RCRA) Overview," 2018. Available at: https://www.epa.gov/rcra/resource-conservation-and-recovery-act-rcra-overview.

[24] Comisión de las Comunidades Europeas, Decisión de la Comisión que sustituye a la Decisión 94/3/CE. Bélgica, 2000.

[25] Comisión Nacional de Regulación, Reglamento (CE) No 574/2004 de la Comisión. Bélgica, 2004.

[26] Ministerio de Ambiente y Desarrollo Sostenible de Colombia, Decreto No. 2811. Bogotá, 1974.

[27] Ministerio de Ambiente y Desarrollo Sostenible de Colombia, Decreto No. 2104. Bogotá, 1983.

[28] Ministerio de Ambiente Vivienda y Desarrollo Territorial de Colombia, Decreto No. 838. Bogotá, 2005.

[29] Ministerio de Desarrollo Económico de Colombia, Decreto No. 1713. Bogotá, 2002.

[30] ICONTEC, Norma Técnica GTC 24. Gestión Ambiental. Residuos Sólidos. Guía para la Separación en la Fuente. Bogotá, 2009.

[31] A. Demirbaş, "Waste management, waste resource facilities and waste conversion processes," Energy Conversion and Management, vol. 52 (2), pp. 1280-1287, 2011. https://doi.org/10.1016/j.enconman.2010.09.025.

[32] D. Polanía, "Política para la gestión integral de residuos sólidos 2016-2030," 2017. Available at: http://www.andi.com.co/Uploads/3.%20Socializaci%C3%B3n%20CONPES%203874%20ANDI.pdf.

[33] A. Nizami, K. Shahzad, M. Rehan, O. Ouda, M. Khan, I. Ismail, T. Almeelbi, J. Basahi, and A. Demirbas, "Developing waste biorefinery in Makkah: a way forward to convert urban waste into renewable energy," Applied Energy, vol. 186, pp. 189-196, 2017. https://doi.org/10.1016/j.apenergy.2016.04.116.

[34] Infobae, "El atlas de los desperdicios: los países que más basura producen," 2017. Available at: http://www.infobae.com/economia/rse/2017/05/01/el-atlas-de-los-desperdicios-los-paises-que-mas-basura-producen/.

[35] Concejo de Bogotá, "Proyecto de Acuerdo 113", 2011. Available at: http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=41936.

[36] DNP, "Disposición final de residuos sólidos. Informe nacional," 2017. Available at: https://www.superservicios.gov.co/sala-de-prensa/publicaciones.

[37] L. L. Becerra, "El modelo de negocio que construye casas a partir de bloques de plástico," La República, 2017. Available at: https://www.larepublica.co/responsabilidad-social/el-modelo-de-negocio-que-construye-casas-a-partir-de-bloques-de-plastico-2537636.

[38] M. Okan, H. Aydin, and M. Barsbay, "Current approaches to waste polymer utilization and minimization: A review," Journal of Chemical Technology & Biotechnology, vol. 94 (1), pp. 8-21, 2019. https://doi.org/10.1002/jctb.5778.

[39] FAO, "FAOSTAT: Food and agriculture data," 2019. Available at: http://www.fao.org/faostat/es/#data.

[40] H. Escalante, J. Orduz, H. Zapata, M. Cardona, and M. Duarte, "Atlas del potencial energético de la biomasa residual en Colombia," 2009. Available at: http://www1.upme.gov.co/sites/default/files/article/1768/files/Atlas%20de%20Biomasa%20Residual%20Colombia__.pdf.

[41] Agronet, "Anuario Estadístico del Sector Agropecuario. Base Agricola EVA 2007-2017," 2017. Available at: http://www.agronet.gov.co/estadistica/Paginas/default.aspx.

[42] T. Hicks, and C. Verbeek, "Protein-Rich by-Products: Production Statistics, Legislative Restrictions, and Management Options," Protein Byproducts. Reino Unido: Academic Press, 2016, pp. 1-18.

[43] B. Mahro, and M. Timm, "Potential of biowaste from the food industry as a biomass resource," Engineering in Life Sciences, vol. 7 (5), pp. 457-468, 2007. https://doi.org/10.1002/elsc.200620206.

[44] DANE, "Encuesta de sacrificio de ganado," 2018. Available at: https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-de-sacrificio-de-ganado.

[45] FENAVI, "El sector avícola en Colombia creció 4,5% en 2018," 2018. Available at: http://fenavi.org/comunicados-de-prensa/el-sector-avicola-crecio-45-en-2018/.

[46] Hubbard Breeders, "Ultra-Yield," 2007. Available at: http://www.thepoultrysite.com/downloads/single/48/.

[47] M. Bragachini, I. Huerga, D. Mathier, and N. Sosa, "Residuos pecuarios: una problemática que puede transformarse en oportunidad," 2013. Available at: http://inta.gob.ar/documentos/residuos-pecuarios-una-problematica-que-puede-transformarse-en-oportunidad.

[48] R. Tester, J. Karkalas, and Q. Xin, "Starch-composition, fine structure and architecture," Journal of Cereal Science, vol. 39 (2), pp. 151-165, 2004. Doi: https://doi.org/10.1016/j.jcs.2003.12.001

[49] M. van der Maarel, B. van der Veen, J. Uitdehaag, H. Leemhuis, and L. Dijkhuizen, "Properties and applications of starch-converting enzymes of the α-amylase family," Journal of Biotechnology, vol. 94 (2), pp. 137-155, 2002. https://doi.org/10.1016/S0168-1656(01)00407-2.

[50] G. Dongowski, A. Lorenz, and H. Anger, "Degradation of pectins with different degrees of esterification by bacteroides thetaiotaomicron isolated from human gut flora," Applied and Environmental Microbiology, vol. 66 (4), pp. 1321-1327, 2000. https://doi.org/10.1128/AEM.66.4.1321-1327.2000.

[51] B. Thakur, R. Singh, A. Handa, and M. Rao, "Chemistry and Uses of Pectin-A Review," Critical Reviews in Food Science and Nutrition, vol. 37 (1), pp. 47-73, 1997. https://doi.org/10.1080/10408399709527767.

[52] P. Sriamornsak, "Chemistry of pectin and its pharmaceutical uses: A review," Silpakorn University International Journal, vol. 3 (1-2), pp. 206-228, 2003.

[53] H. Yokoi, T. Obita, J. Hirose, S. Hayashi, and Y. Takasaki, "Flocculation properties of pectin in various suspensions," Bioresource Technology, vol. 84 (3), pp. 287-290, 2002. https://doi.org/10.1016/S0960-8524(02)00023-8.

[54] H. Owens, H. Lotzkar, R. Merrill, and M. Peterson, "Viscosities of pectin solutions," Journal of the American Chemical Society, vol. 66 (7), pp. 1178-1182, 1944. https://doi.org/10.1021/ja01235a035.

[55] R. Ciriminna, A. Fidalgo, R. Delisi, L. Ilharco, and M. Pagliaro, "Pectin production and global market," Agro FOOD Industry Hi Tech, vol. 27 (5), pp. 17-20, 2016.

[56] A. Nesterenko, I. Alric, F. Silvestre, and V. Durrieu, "Vegetable proteins in microencapsulation: A review of recent interventions and their effectiveness," Industrial Crops and Products, vol. 42 pp. 469-479, 2013. https://doi.org/10.1016/j.indcrop.2012.06.035.

[57] P. Shewry, and R. Casey, "Introduction. Seed Proteins," Seed Proteins. Alemania: Springer Science+Business Media, 1999, pp. 1-10.

[58] E. Fahy, D. Cotter, M. Sud, and S. Subramaniam, "Lipid classification, structures and tools," Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol. 1811 (11), pp. 637-647, 2011. https://doi.org/10.1016/j.bbalip.2011.06.009.

[59] F. Gunstone, Oils and Fats in the Food Industry. Reino Unido: Blackwell Publishing, 2008.

[60] D. Ferrier, and R. Harvey, Lippincott’s Illustrated Reviews: Biochemistry, 6 ed. Estados Unidos: Lippincott Williams & Wilkins, 2014.

[61] Ó. Sánchez, and S. Montoya, "Production of Bioethanol From Biomass: An overview," Biofuel Technologies. Alemania: Springer, 2013, pp. 397-441.

[62] P. Mohanty, K. Pant, and R. Mittal, "Hydrogen generation from biomass materials: challenges and opportunities," WIREs Energy & Environment, vol. 4 (2), pp. 139-155, 2014. https://doi.org/10.1002/wene.111.

[63] H. Chen, Biotechnology of Lignocellulose. Theory and Practice. China: Chemical Industry Press and Springer, 2014.

[64] S. Li, L. Bashline, L. Lei, and Y. Gu, "Cellulose synthesis and its regulation," The Arabidopsis Book, pp. 1-21, 2014. Doi: https://doi.org/10.1199/tab.0169.

[65] Y. Meng, Z. Pang, and C. Dong, "Enhancing cellulose dissolution in ionic liquid by solid acid addition," Carbohydrate Polymers, vol. 163, pp. 317-323, 2017. https://doi.org/10.1016/j.carbpol.2017.01.085.

[66] Ó. Sánchez, and C. Cardona, Producción de Alcohol Carburante. Una Alternativa para el Desarrollo Agroindustrial. Manizales: Gobernación de Caldas. Secretaría de Educación. Programa de las Naciones Unidadas para el Desarrollo (PNUD). Universidad Nacional de Colombia, 2007.

[67] H. Scheller, and P. Ulvskov, "Hemicelluloses," Annual Review of Plant Biology, vol. 61 pp. 263-289, 2010. https://doi.org/10.1146/annurev-arplant-042809-112315.

[68] J. Gómez, Ó. Sánchez, and X. Benavides, "Análisis de patentes como aproximación al diseño conceptual del proceso de obtención de jarabe de lactosuero," Revista de Investigacion Desarrollo e Innovacion, vol. 7 (2), pp. 331-353, 2017. https://doi.org/10.19053/20278306.v7.n2.2017.5453.

[69] J. Gómez, and Ó. Sánchez, "Producción de galactooligosacáridos: alternativa para el aprovechamiento del lactosuero. Una revisión," Ingeniería y Desarrollo, vol. 37 (1), pp. 129-158, 2019. http://dx.doi.org/10.14482/inde.37.1.637.

[70] AB Newswire, "Whey protein ingredients market global industry analysis, key vendors, opportunity and forecast 2018 to 2023," 2018. Available at: http://www.abnewswire.com/pressreleases/whey-protein-ingredients-market-global-industry-analysis-key-vendors-opportunity-and-forecast-2018-to-2023_180863.html.

[71] R. Kumar, I. Sundari, S. Sen, N. Dasgupta, and R. Chidambaram, "Animal fat and vegetable oil-based platform chemical ciorefinery," Platform Chemical Biorefinery. Países Bajos: Elsevier, 2016, pp. 361-377.

[72] S. Pérez, and D. Samain, "Structure and Engineering of Celluloses," Advances in Carbohydrate Chemistry and Biochemistry. Reino Unido: Elsevier, 2010, pp. 25-116.

[73] J. Carrasco, "Combustión directa de la biomasa," 2007. Available at: http://api.eoi.es/api_v1_dev.php/fedora/asset/eoi:45279/componente45278.pdf.

[74] R. Isemin, A. Mikhalev, D. Klimov, P. Grammelis, N. Margaritis, D. Kourkoumpas, and V. Zaichenko, "Torrefaction and combustion of pellets made of a mixture of coal sludge and straw," Fuel, vol. 210 (Supp. C), pp. 859-865, 2017. https://doi.org/10.1016/j.fuel.2017.09.032.

[75] A. Ibarz, and G. Barbosa, Unit Operations in Food Engineering. Estados Unidos: CRC Press LLC, 2003.

[76] A. Demirbaş, "Combustion of biomass," Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 29 (6), pp. 549-561, 2007. https://doi.org/10.1080/009083190957694.

[77] T. Mendiara, A. Pérez, M. Izquierdo, A. Abad, L. de Diego, F. García, P. Gayán, and J. Adánez, "Chemical looping combustion of different types of biomass in a 0.5kWth unit," Fuel, vol. 211 (Supp. C), pp. 868-875, 2018. https://doi.org/10.1016/j.fuel.2017.09.113.

[78] A. Demirbaş, Biofuels. Securing the Planet’s Future Energy Needs. Reino Unido: Springer, 2009.

[79] L. Jasiūnas, T. Pedersen, S. Toor, and L. Rosendahl, "Biocrude production via supercritical hydrothermal co-liquefaction of spent mushroom compost and aspen wood sawdust," Renewable Energy, vol. 111 (Supp. C), pp. 392-398, 2017. https://doi.org/10.1016/j.renene.2017.04.019.

[80] C. Amen, H. Pakdel, and C. Roy, "Production of monomeric phenols by thermochemical conversion of biomass: A review," Bioresource Technology, vol. 79 (3), pp. 277-299, 2001. https://doi.org/10.1016/S0960-8524(00)00180-2.

[81] L. Clements, and D. Van Dyne, "The Lignocellulosic Biorefinery. A Strategy for Returning to a Sustainable Source of Fuels and Industrial Organic Chemicals," Biorefineries. Industrial Processes and Products: Status Quo and Future Directions. Alemania: Wiley-VCH, 2006, pp. 115-128.

[82] O. Norouzi, F. Safari, S. Jafarian, A. Tavasoli, and A. Karimi, "Hydrothermal gasification performance of Enteromorpha intestinalis as an algal biomass for hydrogen-rich gas production using Ru promoted Fe–Ni/γ-Al2O3 nanocatalysts," Energy Conversion and Management, vol. 141 (Supp. C), pp. 63-71, 2017. https://doi.org/10.1016/j.enconman.2016.04.083.

[83] J. Binder, and R. Raines, "Fermentable sugars by chemical hydrolysis of biomass," Proceedings of the National Academy of Sciences, vol. 107 (10), pp. 4516–4521, 2010. https://doi.org/10.1073/pnas.0912073107.

[84] S. Morales, "Hidrólisis Ácida de Celulosa y Biomasa Lignocelulósica Asistida con Líquidos Iónicos," Doctoral Thesis, Departamento de Química-Física Aplicada, Universidad Autónoma de Madrid, España, 2015.

[85] P. Kumar, D. Barrett, M. Delwiche, and P. Stroeve, "Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production," Industrial & Engineering Chemistry Research, vol. 48 (8), pp. 3713-3729, 2009. https://doi.org/10.1021/ie801542g.

[86] M. Esquível, and M. Bernardo, "El uso de fluidos supercríticos en la industria de aceites alimentarios," Grasas y Aceites, vol. 44 (1), pp. 1-5, 1993. https://doi.org/10.3989/gya.1993.v44.i1.

[87] R. Velasco, H. Villada, and J. Carrera, "Aplicaciones de los fluidos supercríticos en la agroindustria," Información tecnológica, vol. 18 (1), pp. 53-66, 2007. http://dx.doi.org/10.4067/S0718-07642007000100009.

[88] V. Nallathambi Gunaseelan, "Anaerobic digestion of biomass for methane production: A review," Biomass and Bioenergy, vol. 13 (1), pp. 83-114, 1997. https://doi.org/10.1016/S0961-9534(97)00020-2.

[89] P. Vandevivere, L. De Baere, and W. Verstraete, "Types of Anaerobic Digesters for Solid Wastes," Biomethanization of the Organic Fraction of Municipal Solid Wastes. Reino Unido: IWA Publishing, 2003, p. 31.

[90] N. Shammas, and L. Wang, "Aerobic Digestion," Biological Treatment Processes. Estados Unidos: Humana Press, 2009, pp. 635-667.

[91] S. Keshk, "Cellulase application in Enzymatic Hydrolysis of Biomass," New and Future Developments in Microbial Biotechnology and Bioengineering. Países Bajos: Elsevier, 2016, pp. 185-191.

[92] Khan, "Fermentation and anaerobic respiration," 2017. Available at: https://www.khanacademy.org/science/biology/cellular-respiration-and-fermentation/variations-on-cellular-respiration/a/fermentation-and-anaerobic-respiration.

[93] Ó. Sánchez, M. Ortiz, and L. Betancourt, "Obtención de ácido cítrico a partir de suero de leche por fermentación con Aspergillus spp," Revista Colombiana de Biotecnología, vol. 6 (1), pp. 43-54, 2004. https://doi.org/10.15446/rev.colomb.biote.

[94] E. Jong, R. van Ree, R. van Tuil, and W. Elbersen, "Biorefineries for the Chemical Industry. A Dutch Point of View," Biorefineries – Industrial Processes and Products. Alemania: Wiley-VCH, 2006, pp. 85-111.

[95] L. Puigjaner, P. Ollero, C. De Prada, and L. Jiménez, Estrategias de Modelado, Simulación y Optimización de Procesos Químicos. España: Editorial Síntesis, 2006.

[96] Ó. Sánchez, and C. Cardona, "Conceptual design of cost-effective and environmentally-friendly configurations for fuel ethanol production from sugarcane by knowledge-based process synthesis," Bioresource Technology, vol. 104, pp. 305-314, 2012. https://doi.org/10.1016/j.biortech.2011.08.125.

[97] J. Siirola, "Industrial Applications of Chemical Process Synthesis," in Advances in Chemical Engineering. Estados Unidos: Academic Press, 1996, pp. 1-62.

[98] J. Sacramento, "A methodology for evaluating the sustainability of biorefineries: framework and indicators," Biofuels, Bioproducts and Biorefining, vol. 6 (1), pp. 32-44, 2012. http://dx.doi.org/10.1002/bbb.335.

[99] J. Sacramento, F. Navarro, and L. Vilchiz, "Evaluating the sustainability of biorefineries at the conceptual design stage," Chemical Engineering Research and Design, vol. 107 (Supp. C), pp. 167-180, 2016. https://doi.org/10.1016/j.cherd.2015.10.017.

[100] R. Smith, G. Ruiz, and M. Gonzalez, "Using GREENSCOPE indicators for sustainable computer-aided process evaluation and design," Computers & Chemical Engineering, vol. 81, pp. 272-277, 2015. https://doi.org/10.1016/j.compchemeng.2015.04.020.

[101] M. El-Halwagi, Process Integration. Estados Unidos: Elsevier, 2006.

[102] I. Kemp, Pinch Analysis and Process Integration. User Guide on Process Integration for the Efficient Use of Energy. Reino Unido: Elsevier, 2007.

[103] A. Dimian, Integrated Design and Simulation of Chemical Processes. Países Bajos: Elsevier, 2014.

[104] X. Li, "Conflict-based Method for Conceptual Process Synthesis," Doctoral Thesis, Lappeenranta University of Technology, Lappeenranta, Finlandia, 2004.

[105] Q. Chen, and I. Grossmann, "Recent developments and challenges in optimization-based process synthesis," Annual Review of Chemical and Biomolecular Engineering, vol. 8 (1), pp. 249-283, 2017. https://doi.org/10.1146/annurev-chembioeng-080615-033546.

[106] A. Westerberg, and G. Stephanopoulos, "Studies in process synthesis I: Branch and bound strategy with list techniques for the synthesis of separation schemes," Chemical Engineering Science, vol. 30 (8), pp. 963-972, 1975. https://doi.org/10.1016/0009-2509(75)80063-7.

[107] J. Douglas, "A hierarchical decision procedure for process synthesis," AlChE Journal, vol. 31 (3), pp. 353-362, 1985. https://doi.org/10.1002/aic.690310302.

[108] I. Gavrila, and P. Iedema, "Phenomena-driven process design, a knowledge-based approach," Computers & Chemical Engineering, vol. 20, pp. S103-S108, 1996. https://doi.org/10.1016/0098-1354(96)00028-2.

[109] X. Li, and A. Kraslawski, "Conceptual process synthesis: past and current trends," Chemical Engineering and Processing, vol. 43 (5), pp. 589-600, 2004. https://10.1016/j.cep.2003.05.002.

[110] Ó. Sánchez, "Síntesis de Esquemas Tecnológicos Integrados para la Producción Biotecnológica de Alcohol Carburante a partir de Tres Materias Primas Colombianas," Doctoral Thesis, Departamento de Ingeniería Química, Universidad Nacional de Colombia, Manizales, Caldas, 2008.

[111] D. Ng, V. Pham, M. El-Halwagi, A. Jiménez, and H. Dennis, "A Hierarchical Approach to the Synthesis and Analysis of Integrated Biorefineries," Design for Energy and the Environment. Estados Unidos: Taylor and Francis Group, 2010, p. 1101.

[112] J. Douglas, Conceptual Desing of Chemical Processes. Singapur: McGraw-Hill Book Company, 1988.

[113] Z. Yuan, B. Chen, and R. Gani, "Applications of process synthesis: Moving from conventional chemical processes towards biorefinery processes," Computers & Chemical Engineering, vol. 49, pp. 217-229, 2013. https://doi.org/10.1016/j.compchemeng.2012.09.020.

[114] R. Smith, Chemical Process Design and Integration. Reino Unido: John Wiley & Sons, Ltd, 2005.

[115] M. El-Halwagi, Sustainable Design Through Process Integration. Reino Unido: Elsevier, 2012.

[116] S. Sikdar, "Journey towards sustainable development: A role for chemical engineers," Environmental Progress, vol. 22 (4), pp. 227-232, 2003. https://doi.org/10.1002/ep.670220409.

[117] IchemE, "The Sustainability Metrics," 2003. Available at: http://nbis.org/nbisresources/metrics/triple_bottom_line_indicators_process_industries.pdf.

[118] C. Hamelinck, G. Hooijdonk, and A. Faaij, "Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term," Biomass and Bioenergy, vol. 28 (4), pp. 384-410, 2005. https://doi.org/10.1016/j.biombioe.2004.09.002.

[119] S. Serna, G. Aroca, and C. Cardona, "Small-Scale Biorefineries: Future and Perspectives," Biorefineries Concepts, Advancements and Research. Estados Unidos: Nova Science Publishers, 2017, pp. 39-71.

[120] V. Aristizábal, and C. Cardona, "Methods for designing and assessing biorefineries: Review," Biofuels, Bioproducts and Biorefining, pp. 1-20, 2018. https://doi.org/10.1002/bbb.1961.

[121] M. Jack, "Scaling laws and technology development strategies for biorefineries and bioenergy plants," Bioresource Technology, vol. 100 (24), pp. 6324-6330, 2009. https://doi.org/10.1016/j.biortech.2009.06.109.

[122] A. Duarte, W. Sarache, and Y. Costa, "A facility-location model for biofuel plants: Applications in the Colombian context," Energy, vol. 72, pp. 476-483, 2014. Doi: https://doi.org/10.1016/j.energy.2014.05.069.

[123] H. Taha, Investigación de Operaciones, 9 ed. México: Pearson Education, 2012.

[124] A. Duarte, "Metodología para la Localización de Instalaciones de Producción de Biocombustibles con Enfoque de Cadenas de Suministro. Aplicaciones en el Contexto Colombiano," Doctoral Thesis, Departamento Ingeniería Industrial, Universidad Nacional de Colombia, Manizales, Caldas, 2015.

[125] T. Saaty, and L. Vargas, Models, Methods, Concepts & Applications of the Analytic Hierarchy Process, 2 ed. Luxemburgo: Springer Science+Business Media, 2012.

[126] Intelligen Inc., "SuperPro Designer v10," 2019. Available at: http://www.intelligen.com/index.html.

[127] N. Alnur Auli, M. Sakinah, A. Mustafa Al-Bakri, H. Kamarudin, and M. Norazian, "Simulation of xylitol production: a review," Australian Journal of Basic and Applied Sciences, vol. 7 (5), pp. 366-372, 2013.

[128] D. Suárez, O. Marín, J. Ortiz, A. Puentes, L. Ballesteros, and M. Suárez, "Biotechnology as a tool for the agroindustrial exploitation of residues of the chain of Musa spp," Chemical Engineering Transactions, vol. 64, pp. 571-576, 2018. https://doi.org/10.3303/CET1864096.

[129] E. Cadena, M. Vélez, J. Santa, and V. Otálvaro, "Natural fibers from plantain pseudostem (Musa paradisiaca) for use in fiber-reinforced composites," Journal of Natural Fibers, vol. 14 (5), pp. 678-690, 2017. https://doi.org/10.1080/15440478.2016.1266295.

[130] E. Oluyemi, J. Oyekunle, and S. Olasoji, "A comparative study of the removal of heavy metal ions from synthetic wastewaters using different adsorbents," Adsorption Science & Technology, vol. 27 (5), pp. 493-501, 2009. https://doi.org/10.1260/0263-6174.27.5.493.

[131] E. Inam, U. Etim, E. Akpabio, and S. Umoren, "Simultaneous adsorption of lead (II) and 3,7-Bis(dimethylamino)-phenothiazin-5-ium chloride from aqueous solution by activated carbon prepared from plantain peels," Desalination and Water Treatment, vol. 57 (14), pp. 6540-6553, 2016. https://doi.org/10.1080/19443994.2015.1010236.

Published

2019-07-21

How to Cite

Gómez-Soto, J. A., Sánchez-Toro, Óscar J., & Matallana-Pérez, L. G. (2019). Urban, Agricultural and Livestock Residues in the Context of Biorefineries. Revista Facultad De Ingeniería, 28(53), 7–32. https://doi.org/10.19053/01211129.v28.n53.2019.9705

Issue

Section

Papers

Metrics