Capacity of apatite formation of thin films of hydroxyapatite modified by laser ablation
Abstract
In this work, the effect of the modification by laser ablation of hydroxyapatite surfaces synthesized by sol-gel on the capacity of apatite formation by in vitro tests was analyzed. For this, layers of sodium titanate were grown on disks of the Ti6Al4V alloy by immersion in 10 M NaOH at 60 ° C for 24 hours. The hydroxyapatite coatings were then prepared using calcium nitrate tetrahydrate and triethyl phosphite as precursors by the sol-gel method and the dip-coating technique. Finally, patterning was performed by means of an Nd: YAG laser, with working energy of 1.3 mJ. Hydroxyapatite was evaluated and characterized using X-Ray Diffraction, Scanning Electron Microscopy and Dispersive X-ray Energy Spectroscopy techniques. In order to evaluate the reactivity, immersion in simulated body fluid was carried out and calcium atomic absorption analysis was carried out to observe the dissolution and precipitation phenomena of this ion, and it was determined that the samples treated at 600 ° C They induced a better response to the growth of apatites, however, all the coatings have characteristics that would allow these coatings to be used as implants in bone substitutes.
Keywords
hydroxyapatite, laser ablation, sol-gel, surface treatment, titanium alloys
References
[1] Q. Chen, and G. A. Thouas, “Metallic implant biomaterials,” Materials Science Engineering R Reports, vol. 87, pp. 1-57, Jan. 2015. DOI: https://doi.org/10.1016/j.mser.2014.10.001.
[2] S. E. Rodil, “Modificación superficial de biomaterials metálicos,” Revista Latinoamericana de Metalurgia y Materiales, vol. 29, pp. 65-76, 2009.
[3] H. Guo, L. Ping, and T. Qingbiao, “Porous titanium materials with entangled wire structure for load-bearing biomedical applications,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 5, pp. 16-31, 2012. DOI: https://doi.org/10.1016/j.jmbbm.2011.09.016.
[4] A. Sandoval-Amador, L. J. Miranda-Vesga, J. Pérez, and D. Y. Peña-Ballesteros, “Biofuncionalización de Ti6Al4V mediante crecimiento de nanoestructuras de TiO2 con contenido de calcio y fósforo,” Materia, vol. 21 (3), pp. 606-614, 2016. DOI: https://doi.org/10.1590/S1517-707620160003.0058.
[5] A. Sandoval Amador, H. Carreño-Garcia, P. Escobar-Rivero, D. Y. Peña-Ballesteros, and H. A. Estupiñán-Duran, “HOS cell adhesion on Ti6Al4V surfaces texturized by laser engraving,” J. Phys. Conf. Ser., vol. 687, pp. 1-4, 2016. DOI: https://doi.org/10.1088/1742-6596/687/1/012012.
[6] A. Sandoval-Amador, S. M. Guerrero-Barajas, D. R. Hernandez-Salas, D. K. Sierra-Herrera, H. A. Estupiñan-Duran, and D. Y. Peña-Ballesteros, “In vitro electrochemical behaviour of Chitosan- PEG coatings obtained on Ti6Al4V by dip coating,” J. Phys. Conf. Ser. Pap., vol. 935, pp. 3-8, 2017.
[7] A. Sandoval-Amador, Y. M. Bayona–Alvarez, H. Carreño Garcia, P. Escobar-Rivero, and D. Y. Peña-Ballesteros, “HOS cell adhesion on Ti6Al4V ELI texturized by CO2 laser,” J. Phys. Conf. Ser. Pap., vol. 935, pp. 1-4, 2017.
[8] A. Amador-Sandoval, N. D. Montañez-Supelano, A. M. Vera-Arias, P. Escoba- Rivero, and D. Y. Peña-Ballesteros, “HOS cell adhesion on TiO2 nanotubes texturized by laser engraving,” J. Phys. Conf. Ser., vol. 786, pp. 4-10, 2017.
[9] A. Munoz-Mizuno, A. Sandoval-Amador, M. M. Cely, D. Y. Pena-Ballesteros, and R. J. Hernandez, “TiO2 Nanostructures: Voltage Influence in Corrosion Resistance and Human Osteosarcoma HOS Cell Responses,” Indian J. Sci. Technol., vol. 11 (22), pp. 1-9, Jun. 2018. DOI: https://doi.org/10.17485/ijst/2018/v11i22/122201.
[10] R. D. Briceño, “Estudio de la susceptibilidad a la corrosión en presencia de fluidos corporales simulados de una aleación Ti6Al4V recubierta con hidroxiapatita.,” Universidad Central de Venezuela, 2007.
[11] L. J. Reyes-Jaimes, H. A. González-Romero, A. Sandoval-Amador, D. Y. Peña-Ballesteros, and H. A. Estupiñán-Duran, “Evaluación de la degradación de superficies de fluorapatita mediante técnicas electroquímicas,” Rev. Cienc. en Desarro., vol. 6 (1), pp. 33-39, Jul. 2015. DOI: https://doi.org/10.19053/01217488.3647.
[12] D. K. Sierra-Herrera, A. Sandoval-Amador, N. D. Montañez-Supelano, and D. Y. Peña-Ballesteros, “The effect of pulsed current electrodeposition parameters of calcium phosphates coating on Ti6Al4V ELI,” J. Phys. Conf. Ser., vol. 935, pp. 6-11, 2017. DOI: https://doi.org/10.1088/1742-6596/935/1/012032.
[13] L. S. Gómez-Rodríguez, A. F. Quintero Jaime, D. Y. Peña-Ballesteros, and H. A. Estupiñan-Duran, “Obtención, caracterización y evaluación in vitro de recubrimientos de policaprolactona-quitosano sobre la aleación Ti6Al4V tratada químicamente,” Rev. Me, vol. 50 (3), pp. 1-9, 2014.
[14] ASTM, “E3-11 Standard Guide for Preparation of Metallographic Specimens 1,” ASTM Copyright., vol. I, pp. 1-12, Jul. 2011.
[15] D. Wang, C. Chen, and X. Liu, “Effects of sol–gel processing parameters on the phases and microstructures of HA films,” Colloids and Surfaces B Biointerfaces, vol. 57 (2), pp. 237-242, Jun. 2007. DOI: https://doi.org/10.1016/j.colsurfb.2007.02.003.
[16] M. Salazar, and L. Calderón, “Caracterización superficial del acero inoxidable HP-40 utilizando espectroscopía de μ-PLASMA inducido por láser (μ-LIBS),” Universidad Industrial de Santander, 2013.
[17] J. Faure, A. Balamurugan, H. Benhayoune, P. Torres, G. Balossier, and J. M. F. Ferreira, “Morphological and chemical characterization of biomimetic bone like apatite formation on alkali treated Ti6Al4V titanium alloy,” Materials Science and Engineering C, vol. 29 (4), pp. 1252-1257, May. 2009. DOI: https://doi.org/10.1016/j.msec.2008.09.047.
[18] G. de-Souza, and C. M. Lepienskib, “Nanomechanical and nanotribological properties of bioactive titanium surfaces prepared by alkali treatment,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 4 (5), pp. 756–765, Jul. 2011. DOI: https://doi.org/10.1016/j.jmbbm.2010.07.005.
[19] M. Blanco, and J. Carvajal, “Obtención de superficies bioactivas sobre el sustrato Ti6Al4V mediante patronamiento por litografía láser.,” Universidad Industrial de Santander, 2013.
[20] D.-M. Liu, “No TitleStructural evolution of sol–gel-derived hydroxyapatite,” Biomaterials, vol. 23 (7), pp. 1679-1687, Apr. 2002. DOI: https://doi.org/10.1016/S0142-9612(01)00295-2.
[21] C. García, “Síntesis de nanopartículas de Ca10(PO4)6(OH)2 Y Al2O3 para el desarrollo de sólidos porosos de interés biomédico,” Universidad Nacional de Colombia, 2009.
[22] N. Marín, “Síntesis y caracterización de hidroxiapatita microporosa, comparación con un producto comercial,” Rev. Fac. Ing. Univ. Antioquia, vol. 43, pp. 67-76, 2008.
[23] Y. E. Greish, A. S. Al Shamsi, K. Polychronopoulou, and A. I. Ayesh, “Structural evaluation, preliminary in vitro stability and electrochemical behavior of apatite coatings on Ti6Al4V substrates,” Ceramics International, vol. 42 (16), pp. 18204-18214, Dec. 2016. DOI: https://doi.org/10.1016/j.ceramint.2016.08.141.
[24] M. T. Choy, K. W. Yeung, L. Chen, C. Y. Tang, G. C. P. Tsui, and W. C. Law, “In situ synthesis of osteoconductive biphasic ceramic coatings on Ti6Al4V substrate by laser-microwave hybridization,” Surface and Coatings Technology, vol. 330, pp. 92-101, Dec. 2017. DOI: https://doi.org/10.1016/j.surfcoat.2017.09.081.
[25] L. Jenaro, V. Caselis, E. Cervantes, and E. R. Rosas, “Crecimiento en fluido fisiológico simulado de hidroxiapatita sobre películas de PMMA sílice-CaO,” Soc. Mex. Cienc. y Tecnol. Superf. y Mater. Superf. y Vacío, vol. 24 (3), pp. 92–95, 2011.
[26] F. Xin, C. Jian-Peng, and W. Quian, “Bone-like apatite formation on HA/316L stainless steel composite surface in simulated body fluid,” Trans. Nonferrous Met. Soc. China, vol. 19, pp. 347-352, 2009. DOI: https://doi.org/10.1016/S1003-6326(08)60276-9.
[27] I. Leonor, A. Ito, and K. Onuma, “In vitro bioactivity of starch thermoplastic/hydroxyapatite composite biomaterials: an in study atomic force microscopy.,” Biomaterials, vol. 24 (4), pp. 579-585, Feb. 2003. DOI: https://doi.org/10.1016/S0142-9612(02)00371-X.
[28] S. Quiroga, “Efecto de la composición de los recubrimientos mixtos de biovidrio/TiO2 en sus características bioactivas,” Universidad Industrial de Santander, 2011.
[29] J. Cuesta, “Comportamiento electroquímico de recubrimientos Ca -P obtenidos mediante anodizado por plasma químico (APQ) tratados térmicamente.,” Sci. Tech., vol. 13 (36), pp. 233-238, 2007.