Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Caracterización en frecuencia de microondas de películas de titanato de bario obtenidas vía Sol-Gel

Resumen

El presente trabajo se centra en la caracterización estructural, morfológica y dieléctrica de películas de titanato de bario (BTO o BaTiO3 por su fórmula química) depositados mediante la técnica que proporciona recubrimiento por medio de un sistema de rotación (spin coating) sobre substratos de silicio cristalino (Si) y resonadores CPW mediante la técnica Sol-Gel, utilizando una relación molar Ba/Ti de 0.5/0.5. Las guías de ondas se fabricaron sobre substratos de alúmina (Al2O3) con 3 mm de metalización en oro (Au) empleando la técnica de ablación láser. La microscopia electrónica de barrido (SEM) con espectrometría de dispersión de energía de rayos X (EDS) permitió evidenciar la existencia de una película de BTO con una composición elemental de 14.62 % de bario y 5.65 % de titanio, además de un espesor de 0.77 mm medido utilizando la modalidad perfilométrica de la microscopia de fuerza atómica (AFM). La caracterización dieléctrica se llevó a cabo mediante la comparación de la respuesta en frecuencia (parámetro S21) de un resonador CPW con película de BTO depositada y otro resonador de referencia (sin película) usando un analizador vectorial de red (VNA). Estas medidas se comparan a su vez con simulaciones computacionales para obtener las propiedades dieléctricas. Para la película de BTO se determinó una constante dieléctrica relativa (er) de 160 con tangente de pérdida (Tand) de 0.012 para una frecuencia de 3.60 GHz. La constante dieléctrica y la propiedad ferroeléctrica del material elaborado son características bastante promisorias para aplicaciones en circuitos de microondas, tales como miniaturización y sintonizabilidad.

Palabras clave

constante dieléctrica, ferroeléctricos, materiales en microondas, películas delgadas, Sol-Gel, tangente de pérdida

PDF (English) PDF XML (English)

Referencias

[1] M. E. Lines, and A. M. Glass, Principles and applications of ferroelectrics and related materials. Oxford, Englad: Oxford University Press, 2001.

[2] G. Alvarez, R. Zamorano, R. Font, J. Portelles, C. Román, M. Castellanos, and J. Heiras, "Mediciones del perfil de absorción de potencia a microondas en materiales ferroeléctricos y magnetoferroeléctricos," Superficies y Vacío, vol. 18 (1), pp. 11-15, 2005.

[3] S. H. Baek, J. Park, D. M. Kim, V. A. Aksyuk, R. R. Das, S. D. Bu, D. A. Felker, J. Lettieri, V. Vaithyanathan, S. S. N. Bharadwaja, N. Bassiri-Gharb, Y. B. Chen, H. P. Sun, C. M. Folkman, H. W. Jang, D. J. Kreft, S. K. Streiffer, R. Ramesh, X. Q. Pan, S. Trolier-McKinstry, D. G. Schlom, M. S. Rzchowski, R. H. Blick, C. B. Eom, "Giant piezoelectricity on Si for hyperactive MEMS," Science Journals, vol. 334 (6058), pp. 958-961, 2011. https://doi.org/10.1126/science.1207186.

[4] A. Feteira, D. C. Sinclair, I. M. Reaney, Y. Somiya, and M. T. Lanagan, "BaTiO3‐Based Ceramics for Tunable Microwave Applications," Journal of the American Ceramic Society, vol. 87 (6), pp. 1082-1087, 2004. https://doi.org/10.1111/j.1551-2916.2004.01082.x.

[5] R. Schafranek, A. Giere, A. G. Balogh, T. Enz, Y. Zheng, P. Scheele, R. Jakoby, and A. Klein, "Influence of sputter deposition parameters on the properties of tunable barium strontium titanate thin films for microwave applications," Journal of the European Ceramic Society, vol. 29(8), pp. 1433-1442, 2009. https://doi.org/10.1016/j.jeurceramsoc.2008.08.034.

[6] P. W. M. Jacobs, E. A. Kotomin, A. Stashans, and I. Tale, "Theoretical simulations of hole centres in corundum crystals," Modelling and Simulation in Materials Science and Engineering, vol. 2(1), pp. 109, 1994. https://doi.org/10.1088/0965-0393/2/1/008.

[7] H. Jiang, J. Zhai, and X. Yao, "Microwave dielectric properties of BaTiO3–SrZnP2O7 composite ceramics for tunable microwave applications," Journal of Physics D: Applied Physics, vol. 42(22), pp.225404, 2009. https://doi.org/10.1088/0022-3727/42/22/225404.

[8] H. M. Wong, B. Luo, L. C. Ong, K. Yao, and Y. X. Guo, "Characterization of dielectric properties for PZN-PMNPT ferroelectric thin films at microwave frequencies," in Asia-Pacific Microwave Conference, Japan, 2006, pp. 579-582. https://doi.org/10.1109/APMC.2006.4429492.

[9] L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, West Sussex, England: John Wiley & Sons, 2004. https://doi.org/10.1002/0470020466.

[10] O. Harizanov, A. Harizanova, and T. Ivanova, "Formation and characterization of sol–gel barium titanate," Materials Science and Engineering: B, vol. 106 (2), pp. 191-195, 2004. https://doi.org/10.1016/j.mseb.2003.09.014.

[11] C. J. Brinker, and G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. San Diego, California: Academic press, 2013.

[12] S. Sharma, M. Tomar, N. K. Puri, and V. Gupta, "Ultraviolet radiation detection by barium titanate thin films grown by sol–gel hydrothermal method," Sensors and Actuators A: Physical, vol. 230, pp. 175-181, 2015. https://doi.org/10.1016/j.sna.2015.04.019.

[13] D. Tripkovic et al., "Inkjet patterning of in situ sol–gel derived barium titanate thin films," Ceramics International, vol. 42 (1), pp. 1840-1846, 2016. https://doi.org/10.1016/j.ceramint.2015.09.148.

[14] R. Balachandran, H. K. Yow, M. Jayachandran, W. Y. W. Yusof, and V. Saaminathan, "Particle size analysis of Barium Titanate powder by slow-rate Sol-gel process route," in IEEE International Conference on Semiconductor Electronics, Kuala Lumpur, Malaysia, 2006, pp. 406-409. https://doi.org/10.1109/SMELEC.2006.381091.

[15] J. I. Marulanda, M. Cremona, R. Santos, M. C. R. Carvalho, and L. S. Demenicis, "Characterization of SrTiO3 thin films at microwave frequencies using coplanar waveguide linear resonator method," Microwave and Optical Technology Letters, vol. 53 (10), pp. 2418-2422, 2011. https://doi.org/10.1002/mop.26233.

[16] J. Y. Hsu, J. Y. M. Lee, J. J. Wang, L. Y. Yeh, J. T. Lai, and J. Gong, "Electrical properties of barium titanate ferroelectric thin films fabricated by rf magnetron sputtering for memory devices application," in International Electron Devices and Materials Symposium, Hsinchu, Taiwan, 1994, pp. 11. https://doi.org/10.1109/EDMS.1994.86387.

Descargas

Los datos de descargas todavía no están disponibles.