Sistema de iluminación dinámica para incrementar la atención de los estudiantes de diseño en las aulas
Resumen
La iluminación dinámica puede generar un gran impacto en la educación, ya que tiene en cuenta las principales variables fotométricas tales como la temperatura de color y la iluminancia para aumentar la atención de los estudiantes dentro de un salón de clases. En el caso particular de los estudiantes de diseño, el desarrollo de proyectos es un componente fundamental para la enseñanza, en donde los estudiantes principalmente realizan actividades tales como presentar atención a una presentación, realizar ejercicios de ideación y bocetación, y exhibir sus propuestas. Estas actividades requieren de unas condiciones de iluminación específicas y adecuadas para generar un impacto positivo en el desempeño de los estudiantes. Este artículo presenta el diseño de un sistema de iluminación dinámica capaz de ajustar la temperatura de color en un rango entre los 2500 K hasta los 6500 K y los niveles de iluminancia en un rango entre 0 lx y 800 lx para incrementar la atención sostenida y selectiva de los estudiantes de diseño dentro de un salón de clases teniendo en cuenta el tipo de actividad que se está desarrollando. El desempeño del sistema fue evaluado experimentalmente midiendo la atención de los estudiantes dentro de un laboratorio de ergonomía y usabilidad utilizando una cámara de Gesell, una diadema Emotiv Epoc EEG de 14 canales para medir la actividad cerebral, unas gafas de seguimiento ocular y un protocolo para evaluar el desempeño utilizando encuestas y observación a través del uso de cámaras. En conclusión, el sistema de iluminación dinámica puede incrementar los niveles de atención selectiva y sostenida de los estudiantes de diseño al configurar la iluminación de manera específica dependiendo del tipo de actividad que se vaya a desarrollar.
Palabras clave
atención, diseño industrial, educación, iluminación dinámica, iluminancia, temperatura de color
Biografía del autor/a
Andres Eduardo Nieto-Vallejo, M.Sc.
Rol: Recolección datos, Análisis Formal, Software, Validación, Escritura-borrador original, Escritura- revisión y edición.
Jorge Enrique Camacho, M.Sc.
Rol: Conceptualización, Recolección datos, Metodología, Administración del proyecto, Escritura-borrador original.
Roberto Cuervo-Pulido, Ph. D.
Rol: Conceptualización, Metodología, Escritura-borrador original, Escritura- revisión y edición.
Edgar Hernandez-Mihajlovic, M.Sc.
Rol: Conceptualización, Metodología, Escritura-borrador original.
Citas
[1] W. Van Bommel, G. Beld, “Lighting for work: a review of visual and biological effects,” Lighting Research and Technology, vol. 36, no. 4, pp. 255-269, 2004. https://doi.org/10.1191/1365782804li122oa
[2] A. Hameed, S. Amjab, “Impact of Office Design on Employee’s Productivity: A case study of Banking Organizations of Abbottabad Pakistan,” Journal of public affairs, Administration and Management, vol. 3, no. 1, pp. 1-13, 2009
[3] A. Michael, C. Heracleous, “Assesment of natural lighting performance and visual comfort of educational architecture in Southern Europe,” Energy and buildings, vol. 140, pp. 443-457, 2017. https://doi.org/10.1016/j.enbuild.2016.12.087
[4] M. Winterbottom, A. Wilkins, “Lighting and discomfort in the classroom,” Journal of Environmental Psychology, vol. 29, no. 1, pp. 63-75, 2009. https://doi.org/10.1016/j.jenvp.2008.11.007
[5] M. Arbelaez. “Las representaciones mentales,” Revista de Ciencias Humanas, vol 29, pp. 1-8, 2002
[6] L. Bellia, F. Bisegna, G. Spada, “Lighting in indoor environments: Visual and non-visual effects of light sources with different spectral power distributions,” Building and Environment, vol. 46, no. 10, pp. 1984-1992, 2011. https://doi.org/10.1016/j.buildenv.2011.04.007
[7] C. Barkmann, N. Wessolowski, M. Schulte-Markwort, “Applicability and efficacy of variable light in schools,” Physiology and behavior, vol. 105, no. 3, pp. 621-627, 2012. https://doi.org/10.1016/j.physbeh.2011.09.020
[8] S. B. M. Tamrin, Y.G. N. Guan, C.C. Sia, K. Karmegan, “Effects of light’s colour temperatures on visual comfort level, task performances, and alertness among students,” American Journal of Public Health Research, vol. 1, no. 7, pp. 159-165, 2013. https://doi.org/10.12691/ajphr-1-7-3
[9] Y. Chen, Q. Sun, "Artificial intelligent control for indoor lighting basing on person number in classroom," in 9th Asian Control Conference, Istanbul, 2013, pp. 1-4. https://doi.org/10.1109/ASCC.2013.6606030
[10] Suresh S., H. N. S. Anusha, T. Rajath, P. Soundarya, S. V. P. Vudatha, "Automatic lighting and Control System for Classroom," in International Conference on ICT in Business Industry & Government, Indore, 2016, pp. 1-6. https://doi.org/10.1109/ICTBIG.2016.7892666
[11] Y. Wu, X. Pan, J. Yang, C. Yu, "Design and simulation of the auto-control system of classroom lights," in International Conference on Automatic Control and Artificial Intelligence, Xiamen, 2012, pp. 794-798. https://doi.org/10.1049/cp.2012.1097
[12] L. Martirano, "Lighting systems to save energy in educational classrooms," in 10th International Conference on Environment and Electrical Engineering, Rome, 2011, pp. 1-5. https://doi.org/10.1109/EEEIC.2011.5874691
[13] J. Luansheng, L. Chunxia, G. Xiumei, M. Chongxiao, “The Design of Intelligent Lighting System in College Classroom,” Energy Procedia, vol. 17, pp. 90-95, 2012. https://doi.org/10.1016/j.egypro.2012.02.068
[14] L. Changsong, D. Shuxia, "The research of LED intelligent lighting system based on the fractional order controller," in IEEE Workshop on Advanced Research and Technology in Industry Applications, Ottawa, 2014, pp. 469-471. https://doi.org/10.1109/WARTIA.2014.6976297
[15] A. Gupta, P. Gupta, J. Chhabra, "IoT based power efficient system design using automation for classrooms," in Third International Conference on Image Information Processing, Waknaghat, 2015, pp. 285-289. https://doi.org/10.1109/ICIIP.2015.7414782
[16] A. Silitonga, I. G. L. W. Indrawan, "Blind and lighting control to maintain comfort light intensity of the classroom utilizing Microcontroller ATmega8535," in International Conference on Information Technology and Electrical Engineering, Yogyakarta, 2013, pp. 438-443. https://doi.org/10.1109/ICITEED.2013.6676282
[17] A. Kim, S. Wang, L. McCunn, “Building value proposition for interactive lighting systems in the workplace: Combining energy and occupant perspectives,” Journal of Building Engineering, vol. 24, e100752, 2019. https://doi.org/10.1016/j.jobe.2019.100752
[18] W. Bando, M. Miki, N. Hiroaki, R. Tomioka, H. Aida, "Lighting Control to Optimize the Illuminance and Color Temperature Satisfaction in Working Areas," in IEEE International Conference on Systems, Man, and Cybernetics, Japan, 2018, pp. 2335-2340. https://doi.org/10.1109/SMC.2018.00401
[19] Y. Lin, W. Cheng, C. Wu, Y. Sun, "An intelligent lighting control system based on ergonomic research," in International Conference on Consumer Electronics, Communications and Networks, XianNing, 2011, pp. 4744-4747. https://doi.org/10.1109/CECNET.2011.5768912
[20] E. Hansen, S. Nielsen, D. Georgieva, K, Schledermann “The Impact of Dynamic Lighting in Classrooms. A Review on Methods,” In: Brooks A., Brooks E., Vidakis N. (eds). Interactivity, Game Creation, Design, Learning, and Innovation, Springer. https://doi.org/10.1007/978-3-319-76908-0_46
[21] B. Sun, Zhang, Cao, “Development and Implementation of a Self-Optimizable Smart Lighting System Based on Learning Context in Classroom,” International Journal of Environmental Research and Public Health, vol. 17. no. 4, e1217, 2020. https://doi.org/10.3390/ijerph17041217