Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Machine learning aplicado a la violencia de género: un estudio de mapeo sistemático

Resumen

Machine Learning (ML) se ha posicionado como una de las mejores herramientas para abordar diferentes problemáticas gracias a su capacidad de procesamiento de datos y a los diferentes modelos, algoritmos y factor predictivo para ayudar a dar solución a los problemas definidos. Es por ello, que este artículo presenta un mapeo sistemático de los años 2018 a 2023, el cual se orienta en la aplicación de ML enfocado en la violencia de género. La metodología seguida para la realización del estudio parte de la definición de elementos, como preguntas de investigación, cadenas de búsqueda, fuentes bibliográficas y criterios de inclusión y exclusión. Los resultados de la investigación permiten comprender los beneficios y retos que presenta el uso de inteligencia artificial, desde específicamente una de sus ramas, el ML, para ayudar a combatir problemas en diferentes ámbitos de la sociedad, como educación, salud, violencia, entre otros. Además de constatar en qué países se está investigando el ML y en qué contextos es aplicado. El trabajo discute la aplicación de ML para combatir la violencia de género. Tras realizar el estudio de revisión de la literatura, se encontraron resultados beneficiosos de la aplicación de inteligencia artificial y ML, ya que los resultados obtenidos en los diferentes artículos presentaban capacidad predictiva y mejoras en comparación con los sistemas actualmente usados. Sin embargo, pese a los resultados positivos, no se encontró en la revisión evidencia de desarrollo de un modelo o algoritmo de ML aplicado a la violencia de género en Colombia.

Palabras clave

Aprendizaje automático, violencia de género, violencia intrafamiliar, Colombia, predicción.

PDF (English) XML (English)

Citas

  1. UN Women, Fourth World Conference on Women, 1995. https://www.un.org/womenwatch/daw/beijing/platform/violence.htm#diagnosis
  2. UN Women, Las mujeres en Colombia, 2023. https://colombia.unwomen.org/es/onu-mujeres-en-colombia/las-mujeres-en-colombia
  3. ReliefWeb, Colombia: Situación de la Violencia Basada en Género (VBG) - Comparativo 2020 – 2021, 2022. https://reliefweb.int/report/colombia/colombia-situaci-n-de-la-violencia-basada-en-g-nero-vbg-comparativo-2020-2021-abril
  4. IBM, ¿Qué es Machine Learning?, 2023. https://www.ibm.com/mx-es/analytics/machine-learning
  5. Á. González-Prieto, A. Brú, J. C. Nuño, J. L. González-Álvarez, “Machine learning for risk assessment in gender-based crime,” Arxiv, Jun. 2021. https://doi.org/10.48550/arxiv.2106.11847
  6. I. Y. Chen, E. Alsentzer, H. Park, R. Thomas, B. Gosangi, R. Gujrathi, B. Khurana, “Intimate Partner Violence and Injury Prediction from Radiology Reports,” Biocomputing, vol. 26, pp. 55–66, 2021. https://doi.org/10.1142/9789811232701_0006
  7. L. Quijano-Sánchez, F. Liberatore, G. Rodríguez-Lorenzo, R. E. Lillo, J. L. González-Álvarez, “A twist in Intimate Partner Violence Risk Assessment Tools: Gauging the contribution of exogenous and historical variables,” Knowledge-Based Systems, vol. 234, e107586, 2021. https://doi.org/10.1016/j.knosys.2021.107586
  8. E. Turner, G. Brown, J. Medina Ariza, “Predicting Domestic Abuse (Fairly) and Police Risk Assessment,” Psychosocial Intervention, vol. 31, no. 3, pp. 145-157, 2022. https://doi.org/10.5093/pi2022a11
  9. B. A. Kitchenham, D. Budgen, O. Pearl Brereton, “Using mapping studies as the basis for further research - A participant-observer case study,” Information and Software Technology, vol. 53, no. 6, pp. 638–651, 2011. https://doi.org/10.1016/j.infsof.2010.12.011
  10. A. Carrera-Rivera, F. Larrinaga, G. Lasa, “Context-awareness for the design of Smart-product service systems: Literature review,” Computers in Industry, vol. 142. e103730, 2022. https://doi.org/10.1016/j.compind.2022.103730
  11. F. Isa, “Propuestas de modelos originales en inteligencia artificial, Teoría de juegos y probabilidad para: distribución de riquezas, medio ambiente, alimentos, cáncer, violencia y educación,” South Florida Journal of Development, vol. 3, no. 5, pp. 6171–6191, 2022. https://doi.org/10.46932/sfjdv3n5-053
  12. A. Monasterio Astobiza, “Inteligencia Artificial para el bien común (AI4SG): IA y los Objetivos de Desarrollo Sostenible,” Arbor, vol. 197, no. 802, e629, 2021. https://doi.org/10.3989/arbor.2021.802007
  13. M. Molina, F. Garip, “Machine Learning for Sociology,” Annual Review of Sociology, vol. 45, pp. 27–45, Jul. 2019. https://doi.org/10.1146/annurev-soc-073117-041106
  14. D. Yuliawan, D. Budiman Hakim, B. Juanda, A. Fauzi, “Classification and prediction of rural socio-economic vulnerability (IRSV) integrated with social-ecological system (SES),” Decision Science Letters, vol. 11, pp. 223-234, 2022. https://doi.org/10.5267/j.dsl.2022.4.001
  15. M. Zhang, T. Li, Y. Yu, Y. Li, P. Hui, Y. Zheng, “Urban Anomaly Analytics: Description, Detection, and Prediction,” IEEE Trans Big Data, vol. 8, pp. 809-826, 2022. https://doi.org/10.1109/tbdata.2020.2991008
  16. D. Dantas, M. de Castro Nunes Santos Terra, L. P. Baldissera Schorr, N. Calegarioa, “Machine learning for carbon stock prediction in a tropical forest in Southeastern Brazil,” Bosque (Valdivia), vol. 42, no. 1, pp. 131–140, 2021. https://doi.org/10.4067/S0717-92002021000100131
  17. H. S. Garcia Cañon, “Implementación de técnicas de machine learning para la predicción de variables meteorológicas y del suelo que afectan la agricultura,” Grade Thesis, Universidad de Los Andes, Colombia, 2019. https://repositorio.uniandes.edu.co/bitstream/handle/1992/45458/u827540.pdf
  18. H. Lamos-Díaz, D. E. Puentes-Garzón, D. A. Zarate-Caicedo, “Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia,” Revista Facultad de Ingeniería, vol. 29, no. 54, e10853, 2020. https://doi.org/10.19053/01211129.V29.N54.2020.10853
  19. O. D. Castrillón, W. Sarache, S. Ruiz-Herrera, “Predicción del rendimiento académico por medio de técnicas de inteligencia artificial,” Formación universitaria, vol. 13, no. 1, pp. 93-102, 2020. https://doi.org/10.4067/S0718-50062020000100093
  20. H. Ordóñez, C. Cobos, V. Bucheli, “Machine learning model for predicting theft trends in Colombia,” Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E29, pp. 494-506, 2020.
  21. H.-A. Ordoñez-Eraso, C.-J. Pardo-Calvache, C.-A. Cobos-Lozada, “Detección de tendencias de homicidios en Colombia usando Machine Learning,” Revista Facultad de Ingeniería, vol. 29, no. 54, e11740, 2020. https://doi.org/10.19053/01211129.v29.n54.2020.11740
  22. J. D. Gelvez Ferreira, M. P. Nieto Rodriguez, C. A. Rocha Ruiz, “Prediciendo el crimen en ciudades intermedias: un modelo de ‘machine learning’ en Bucaramanga, Colombia,” Urvio. Revista Latinoamericana de Estudios de Seguridad, no. 34, pp. 83-98, 2022. https://doi.org/10.17141/urvio.34.2022.5395
  23. J. E. Valero Cajahuanca, Á. F. Navarro Raymundo, A. C. Larios Franco, J. D. Julca Flores, “Deserción universitaria: Evaluación de diferentes algoritmos de Machine Learning para su predicción,” Revista de Ciencias Sociales, vol. 28, no. 3, pp. 362–375, Jul. 2022. https://doi.org/10.31876/rcs.v28i3.38480
  24. O. D. Castrillón-Gómez, W. Sarache, S. Ruiz-Herrera, “Predicción de las principales variables que conllevan al abandono estudiantil por medio de técnicas de minería de datos,” Formación universitaria, vol. 13, no. 6, pp. 217-228, 2020. https://doi.org/10.4067/S0718-50062020000600217
  25. R. Mosquera, O. D. Castrillón, L. Parra, “Predicción de Riesgos Psicosociales en Docentes de Colegios Públicos Colombianos utilizando Técnicas de Inteligencia Artificial,” Información Tecnológica, vol. 29, no. 4, pp. 267–280, 2018. https://doi.org/10.4067/S0718-07642018000400267
  26. S. Kino, Y.-T. Hsu, K. Shiba, Y.-S. Chien, C. Mita, I. Kawachi, A. Daoud, “A scoping review on the use of machine learning in research on social determinants of health: Trends and research prospects,” SSM Popul Health, vol. 15, e100836, 2021. https://doi.org/10.1016/J.SSMPH.2021.100836
  27. L. D. Polero, C. M. Garmendia, R. E. Echegoyen, A. Alves de Lima, F. Bertón, F. Lambardi, P. Ariznavarreta, R. Campos, J. P. Costabel, “A Machine Learning Algorithm for Risk Prediction of Acute Coronary Syndrome (ANGINA),” Revista Argentina de Cardiología, vol. 88, pp. 9-13, 2020. https://doi.org/10.7775/rac.v88.i1.17193
  28. I. L. Acosta-Guzman, E. A. Varela-Tapia, C. I. Acosta-Varela, J. D. Tumbaco-Bravo, “Body mass index (BMI) prediction using support vector machine algorithms and AI machine learning decision trees,” in Vigesima Primera Conferencia Iberoamericana en Sistemas, Cibernetica e Informatica, 2022, pp. 18-23. https://doi.org/10.54808/CISCI2022.01.18
  29. A. G. Quintanilla, N. M. Medina, J. Sulla-Torres, “Prediction of breast cancer through biomarkers using machine learning,” in 18th LACCEI International Multi-Conference for Engineering, Education and Technology, 2020. https://doi.org/10.18687/LACCEI2020.1.1.514
  30. J. Tan, C. Ma, C. Zhu, Y. Wang, X. Zou, H. Li, J. Li, Y. He, C. Wu, “Prediction models for depression risk among older adults: systematic review and critical appraisal,” Ageing Research Reviews, vol. 83, e101803, 2023. https://doi.org/10.1016/j.arr.2022.101803
  31. A. A. Lara, “Prediction of psychosocial occupational risk in urban transport applying machine learning techniques,” Revista Ibérica de Sistemas e Tecnologias de Informação, no. E37, pp. 153-165, 2020.
  32. W. Sun, et al., “Towards artificial intelligence-based learning health system for population-level mortality prediction using electrocardiograms,” NPJ Digital Medicine, vol. 6, no. 1, e21, 2023. https://doi.org/10.1038/s41746-023-00765-3
  33. M. Molina-Calderon et al., “Application of Machine Learning for the Prediction of Covid19 Through Classification Techniques and Supervised Learning,” in 20th LACCEI International Multi-Conference for Engineering, Education, and Technology, 2022. https://doi.org/10.18687/LACCEI2022.1.1.425
  34. S. A. Sadegh-Zadeh, M. Bahrami, A. Najafi, M. Asgari-Ahi, R. Campion, A. M. Hajiyavand, “Evaluation of COVID-19 pandemic on components of social and mental health using machine learning, analysing United States data in 2020,” Frontiers in Psychiatry, vol. 13, e933439, 2022. https://doi.org/10.3389/fpsyt.2022.933439
  35. K. Todorovic, E. O’Leary, K. P. Ward, P. P. Devarasetty, S. J. Lee, M. Knox, E. Andari, “Prevalence, increase and predictors of family violence during the COVID-19 pandemic, using modern machine learning approaches,” Frontiers in Psychiatry, vol. 13, e883294, 2022. https://doi.org/10.3389/fpsyt.2022.883294
  36. M. Hannes, C. Rauh, “Using past violence and current news to predict changes in violence,” International Interactions, vol. 48, no. 4, pp. 579-596, 2022. https://doi.org/10.1080/03050629.2022.2063853
  37. D. E. Goin, K. E. Rudolph, J. Ahern, “Predictors of firearm violence in urban communities: A machine-learning approach,” Health and Place, vol. 51, pp. 61-67, 2018. https://doi.org/10.1016/j.healthplace.2018.02.013
  38. J. Yin, “Crime Prediction Methods Based on Machine Learning: A Survey,” Computers, Materials and Continua, vol. 74, no. 2, pp. 4601–4629, 2023. https://doi.org/10.32604/cmc.2023.034190
  39. L. Bennett Moses, J. Chan, “Algorithmic prediction in policing: assumptions, evaluation, and accountability,” Policing and Society, vol. 28, no. 7, pp. 806–822, 2018. https://doi.org/10.1080/10439463.2016.1253695
  40. A. Cáceres, “Rol de la tecnología en la prevención de la violencia de género. El caso de Qispy,” Master Thesis, Pontificia Universidad Católica del Perú, Perú, 2021. http://hdl.handle.net/20.500.12404/20848
  41. M. F. Canabal Benito, R. Toro Flores, S. López Ongil, C. López Ongil, “Neurotransmisores para mejorar la detección de situaciones de peligro en víctimas de violencia de género,” in V Congreso Internacional de Jóvenes Investigadorxs con perspectiva de género, 2020, pp. 314–322. http://hdl.handle.net/10016/32409
  42. L. F. Macedo Quiñones, G. T. Chávez Tarazona, “Aplicación de redes neuronales artificiales sobre la violencia de la mujer por su pareja según la encuesta demográfica y de salud familiar, Endes 2016,” Grade Thesis, Universidad Nacional Santiago Antúnez de Mayolo, Perú, 2018. http://repositorio.unasam.edu.pe/handle/UNASAM/2885
  43. A. Farouk, A. Nasser, “El árbol de decisión en el análisis de la convivencia en casos de víctimas mortales de violencia de género en España,” Journal of Science and Research, vol. 5, no. 4, pp. 109–119, 2020. https://doi.org/10.5281/zenodo.4161179
  44. I. Rodríguez-Rodríguez, J. V. Rodríguez, D. J. Pardo-Quiles, P. Heras-González, I. Chatzigiannakis, “Modeling and Forecasting Gender-Based Violence through Machine Learning Techniques,” Applied Sciences, vol. 10, no. 22, e8244, 2020. https://doi.org/10.3390/APP10228244
  45. C. M. Homan, J. Nicolas Schrading, R. W. Ptucha, C. Cerulli, C. O. Alm, “Quantitative Methods for Analyzing Intimate Partner Violence in Microblogs: Observational Study,” Journal of Medical Internet Research, vol. 22, no. 11, p. e15347, 2020. https://doi.org/10.2196/15347
  46. J. M. Kafka, M. D. Fliss, P. J. Trangenstein, L. McNaughton Reyes, B. W. Pence, K. E. Moracco, “Detecting intimate partner violence circumstance for suicide: development and validation of a tool using natural language processing and supervised machine learning in the National Violent Death Reporting System,” Injury Prevention, vol. 29, no. 2, pp. 134-141, Dec. 2022. https://doi.org/10.1136/IP-2022-044662
  47. L. B. Amusa, A. V. Bengesai, H. T. A. Khan, “Predicting the Vulnerability of Women to Intimate Partner Violence in South Africa: Evidence from Tree-based Machine Learning Techniques,” Journal of Interpersonal Violence, vol. 37, no. 7-8, pp. 5228-5245, 2020. https://doi.org/10.1177/0886260520960110
  48. Á. González-Prieto, A. Brú, J. C. Nuño, J. L. González-Álvarez, “Hybrid machine learning methods for risk assessment in gender-based crime,” Knowledge-Based Systems, vol. 260, e110130, 2023. https://doi.org/10.1016/j.knosys.2022.110130
  49. L. McDougal, N. Dehingia, N. Bhan, A. Singh, J. McAuley, A. Raj, “using machine learning to explore factors associated with marital sexual violence in a cross-sectional study from India,” BMJ Open, vol. 11, no. 12, e053603, Dec. 2021. https://doi.org/10.1136/bmjopen-2021-053603
  50. A. Raj, N. Dehingia, A. Singh, J. McAuley, L. McDougal, “Machine learning analysis of non-marital sexual violence in India,” EClinicalMedicine, vol. 39, e101046, 2021. http://doi.org/10.1016/j.eclinm.2021.101046
  51. N. Dehingia, A. K. Dey, L. McDougal, J. McAuley, A. Singh, A. Raj, “Help seeking behavior by women experiencing intimate partner violence in india: A machine learning approach to identifying risk factors,” Plos One, vol. 17, no. 2, e0262538, 2022. https://doi.org/10.1371/journal.pone.0262538
  52. S. Lopez-Larrosa et al., “Using Machine Learning Techniques to Predict Adolescents’ Involvement in Family Conflict,” Social Science Computer Review, vol. 0, no. 0, e01, 2022. https://doi.org/10.1177/08944393221084064
  53. J. Xue, J. Chen, C. Chen, R. Hu, T. Zhu, “The hidden pandemic of family violence during COVID-19: Unsupervised learning of tweets,” Journal of Medical Internet Research, vol. 22, no. 11, e24361, 2020. https://doi.org/10.2196/24361
  54. W. E. Leal, A. R. Piquero, J. Kurland, N. L. Piquero, E. L. Gloyd, “A Case Study of Family Violence During COVID-19 in San Antonio,” Crime Delinq, vol. 68, no. 8, pp. 1161-1182, Jul. 2022. https://doi.org/10.1177/00111287211064781
  55. M. M. Hossain et al., “Prediction on Domestic Violence in Bangladesh during the COVID-19 Outbreak Using Machine Learning Methods,” Applied System Innovation, vol. 4, no. 4, e77, Oct. 2021. https://doi.org/10.3390/asi4040077
  56. M. Clur, “Violencia doméstica en Argentina: un modelo de evaluación de riesgos aplicando técnicas de machine learning.” Grade Thesis, Instituto Tecnológico de Buenos Aires, Argentina, 2022. http://ri.itba.edu.ar/handle/123456789/3851

Descargas

Los datos de descargas todavía no están disponibles.