Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Climatización nocturna de edificaciones por ventilación de aire exterior

Resumen

Los edificios contienen el entorno en el cual se desarrollan casi la totalidad de las actividades humanas; por ende, estas construcciones representan hoy un gran sumidero de energía. El establecimiento de las condiciones de confort térmico dentro de estos inmuebles es responsable de gran parte de su demanda energética. Ofrecer un marco teórico del desempeño y las tendencias en las investigaciones e implementaciones de la climatización nocturna de edificaciones por ventilación de aire exterior es el objetivo de este trabajo. La contribución se sostiene en una revisión bibliográfica realizada en el directorio académico Scopus. La información extraída de dicho catalogo fue procesada en el software VOSviewer, mediante el cual se realizó la minería de texto, el mapa de términos y las redes de acción investigativa. La ventilación directa tiene un potencial de enfriamiento más significativo en regiones que se caracterizan por una elevada diferencia entre el valor de la temperatura del aire en el día y el de la noche. La efectividad del enfriamiento nocturno y la predicción confiable del comportamiento térmico están fuertemente relacionadas con el modelo adoptado para el algoritmo de convección. Una predicción fiable de la transferencia de calor por convección requiere un enfoque basado en el uso de simulaciones computacionales de dinámica de fluidos, que son mucho más demandantes desde el punto de vista computacional, frente a simulaciones de variaciones de flujos de energía en función del tiempo. En la mayoría de las investigaciones la posición de la masa térmica es poco significativa, mientras que se le da mayor importancia a la cantidad de aire de ventilación. En particular, la demanda de energía para la refrigeración del edificio disminuye fuertemente si las tasas de flujo de aire aumentan.

Palabras clave

confort térmico, eficiencia, estrategia energética, minería de texto

PDF (English) XML (English)

Citas

[1] M. Boulic, et al., "Increasing the ventilation rate and temperature in New Zealand classrooms using a solar roof collector," in Central Europe Towards Sustainable Building 2016: Innovations for Sustainable Future, 2016, pp. 1559-1566: Grada Publishing.

[2] D. Bravo Hidalgo, "Climatización solar de edificaciones," Centro Azúcar, vol. 42, pp. 72-82, 2015.

[3] A. I. AbdelAzim, A. M. Ibrahim, and E. M. Aboul-Zahab, "Development of an energy efficiency rating system for existing buildings using Analytic Hierarchy Process – The case of Egypt," Renewable and Sustainable Energy Reviews, Review vol. 71, pp. 414-425, May. 2017. DOI: https://doi.org/10.1016/j.rser.2016.12.071.

[4] G. Y. Yun, and K. Song, "Development of an automatic calibration method of a VRF energy model for the design of energy efficient buildings," Energy and Buildings, Article vol. 135, pp. 156-165, Jan. 2017. DOI: https://doi.org/10.1016/j.enbuild.2016.11.060.

[5] H. Yi, R. S. Srinivasan, W. W. Braham, and D. R. Tilley, "An ecological understanding of net-zero energy building: Evaluation of sustainability based on emergy theory," Journal of Cleaner Production, vol. 143, pp. 654-671, Feb. 2017. DOI: https://doi.org/10.1016/j.jclepro.2016.12.059.

[6] M. Kostka, and M. Szulgowska-Zgrzywa, "Change-over natural and mechanical ventilation system energy consumption in single-family buildings," in International Conference on Advances in Energy Systems and Environmental Engineering, 2017. DOI: https://doi.org/10.1051/e3sconf/20172200086.

[7] M. J. Alonso, H. M. Mathisen, and R. Collins, "Ventilative cooling as a solution for highly insulated buildings in cold climate," in 6th International Building Physics Conference, 2015, vol. 78, pp. 3013-3018. DOI: https://doi.org/10.1016/j.egypro.2015.11.707.

[8] D. E. Kalz, and J. Pfafferott, "Comparative evaluation of natural ventilated and mechanical cooled non-residential buildings in Germany: Thermal comfort in summer," in Conference on Adapting to Change: New Thinking on Comfort, Windsor, 2010.

[9] P. Blecich, M. Franković, and Ž. Kristl, "Energy retrofit of the Krsan Castle: From sustainable to responsible design - A case study," Energy and Buildings, vol. 122, pp. 23-33, Jun. 2016. DOI: https://doi.org/10.1016/j.enbuild.2016.04.011.

[10] A. I. Ibiyeye, F. Z. J. Mohd, and S. Zalina, "Natural ventilation provisions in terraced-house designs in hot-humid climates: Case of Putrajaya, Malaysia," Pertanika Journal of Social Sciences and Humanities, vol. 23(4), pp. 885-904, 2015.

[11] A. R. Rempel, and S. J. Remington, "Optimization of passive cooling control thresholds with GenOpt and EnergyPlus," in 2015 Symposium on Simulation for Architecture and Urban Design, SimAUD 2015, Part of the 2015 Spring Simulation Multi-Conference, SpringSim 2015, 2015, vol. 47, pp. 103-110.

[12] A. M. Omer, "Principle of low energy building design: Heating, ventilation and air conditioning," in Advances in Energy Research, vol. 20: Nova Science Publishers, 2014, pp. 57-103.

[13] M. Raheel, S. Ayaz, and M. T. Afzal, "Evaluation of h-index, its variants and extensions based on publication age & citation intensity in civil engineering," Scientometrics, vol. 114(3), pp. 1107-1127, Mar. 2018. DOI: https://doi.org/10.1007/s11192-017-2633-2.

[14] J. A. Teixeira da Silva, and J. Dobránszki, "Multiple versions of the h-index: cautionary use for formal academic purposes," Scientometrics, Article in Press, pp. 1-7, 2018.

[15] V. Geros, M. Santamouris, S. Karatasou, A. Tsangrassoulis, and N. Papanikolaou, "On the cooling potential of night ventilation techniques in the urban environment," Energy and Buildings, vol. 37(3), pp. 243-257, Mar. 2005. DOI: https://doi.org/10.1016/j.enbuild.2004.06.024.

[16] M. Kolokotroni, I. Giannitsaris, and R. Watkins, "The effect of the London urban heat island on building summer cooling demand and night ventilation strategies," Solar Energy, vol. 80(4), pp. 383-392, Apr. 2006. DOI: https://doi.org/10.1016/j.solener.2005.03.010.

[17] H. Campaniço, P. M. M. Soares, P. Hollmuller, and R. M. Cardoso, "Climatic cooling potential and building cooling demand savings: High resolution spatiotemporal analysis of direct ventilation and evaporative cooling for the Iberian Peninsula," Renewable Energy, vol. 85(Supplement C), pp. 766-776, Jan. 2016. DOI: https://doi.org/10.1016/j.renene.2015.07.038.

[18] K. Goethals, H. Breesch, and A. Janssens, "Sensitivity analysis of predicted night cooling performance to internal convective heat transfer modelling," Energy and Buildings, vol. 43(9), pp. 2429-2441,Sep. 2011. DOI: https://doi.org/10.1016/j.enbuild.2011.05.033.

[19] K. Goethals, I. Couckuyt, T. Dhaene, and A. Janssens, "Sensitivity of night cooling performance to room/system design: Surrogate models based on CFD," Building and Environment, vol. 58(Supplement C), pp. 23-36, Dec. 2012. DOI: https://doi.org/10.1016/j.buildenv.2012.06.015.

[20] J. Le Dréau, P. Heiselberg, and R. L. Jensen, "Experimental investigation of convective heat transfer during night cooling with different ventilation systems and surface emissivities," Energy and Buildings, vol. 61, pp. 308-317, Jun. 2013. DOI: https://doi.org/10.1016/j.enbuild.2013.02.021.

[21] S. Leenknegt, R. Wagemakers, W. Bosschaerts, and D. Saelens, "Numerical sensitivity study of transient surface convection during night cooling," Energy and Buildings, vol. 53, pp. 85-95, Oct. 2012. DOI: https://doi.org/10.1016/j.enbuild.2012.06.020.

[22] P. Roach, F. Bruno, and M. Belusko, "Modelling the cooling energy of night ventilation and economiser strategies on façade selection of commercial buildings," Energy and Buildings, vol. 66, pp. 562-570, Nov. 2013. DOI: https://doi.org/10.1016/j.enbuild.2013.06.034.

[23] M. J. Alonso, H. M. Mathisen, and R. Collins, "Ventilative Cooling as a Solution for Highly Insulated Buildings in Cold Climate," Energy Procedia, vol. 78, pp. 3013-3018, Nov. 2015. DOI: https://doi.org/10.1016/j.egypro.2015.11.707.

[24] B. Vidrih, C. Arkar, and S. Medved, "Generalized model-based predictive weather control for the control of free cooling by enhanced night-time ventilation," Applied Energy, vol. 168, pp. 482-492, Apr. 2016. DOI: https://doi.org/10.1016/j.apenergy.2016.01.109.

[25] E. Solgi, R. Fayaz, and B. M. Kari, "Cooling load reduction in office buildings of hot-arid climate, combining phase change materials and night purge ventilation," Renewable Energy, vol. 85, pp. 725-731, Jan. 2016. DOI: https://doi.org/10.1016/j.renene.2015.07.028.

[26] G. Chiesa and M. Grosso, "Geo-climatic applicability of natural ventilative cooling in the Mediterranean area," Energy and Buildings, vol. 107, pp. 376-391, Nov. 2015. DOI: https://doi.org/10.1016/j.enbuild.2015.08.043.

[27] R. Zhang, Y. Nie, K. P. Lam, and L. T. Biegler, "Dynamic optimization based integrated operation strategy design for passive cooling ventilation and active building air conditioning," Energy and Buildings, vol. 85, pp. 126-135, Dec. 2014. DOI: https://doi.org/10.1016/j.enbuild.2014.09.032.

[28] T. Yu, P. Heiselberg, B. Lei, M. Pomianowski, and C. Zhang, "A novel system solution for cooling and ventilation in office buildings: A review of applied technologies and a case study," Energy and Buildings, vol. 90, pp. 142-155, Mar. 2015. DOI: https://doi.org/10.1016/j.enbuild.2014.12.057.

[29] F. Ascione, L. Bellia, P. Mazzei, and F. Minichiello, "Solar gain and building envelope: the surface factor," Building Research & Information, vol. 38(2), pp. 187-205, Apr. 2010. DOI: https://doi.org/10.1080/09613210903529118.

[30] F. Ascione, N. Bianco, R. F. De Masi, F. de Rossi, C. De Stasio, and G. P. Vanoli, "Energy audit of health care facilities: Dynamic simulation of energy performances and energy-oriented refurbishment of system and equipment for microclimatic control," American Journal of Engineering and Applied Sciences, Article vol. 9(4), pp. 814-834, Apr. 2016. DOI: https://doi.org/10.3844/ajeassp.2016.814.834.

[31] F. Ascione, O. Böttcher, R. Kaltenbrunner, and G. P. Vanoli, "Methodology of the cost-optimality for improving the indoor thermal environment during the warm season. Presentation of the method and application to a new multi-storey building in Berlin," Applied Energy, vol. 185, pp. 1529-1541, Jan. 2017. DOI: https://doi.org/10.1016/j.apenergy.2015.10.169.

[32] B. EN, "15251: 2007," Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics, 2007.

[33] A. Standard, "Standard 55-2010:“Thermal Environmental Conditions for Human Occupancy”; ASHRAE," Atlanta USA, 2010.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

También puede {advancedSearchLink} para este artículo.