Desviación relativa promedio como medida de robustez para el problema de programación de proyectos estocástico
Resumen
En el problema de programación de proyectos, la robustez de una solución puede entenderse como la capacidad que posee una línea-base para soportar las disrupciones generadas por eventos no planeados (riesgos). Una linea-base robusta de un proyecto puede ser obtenida a partir de métodos basados en redundancia, los cuales son considerados métodos proactivos, que permiten resolver el problema de programación estocástica de proyectos. En esta investigación son evaluados tres métodos basados en redundancia y su desempeño es comparado en términos de robustez. Estos métodos adicionan tiempo extra a la duración original de las actividades, con el fin de enfrentar las eventualidades que pueden aparecer durante la ejecución del proyecto. En este artículo se propone un indicador, denominado desviación media relativa (RAD, por su sigla en inglés), el cual permite analizar la robustez de las soluciones obtenidas para el Project Scheduling Problem (PSP), con duración aleatoria de actividades. La desviación media relativa (RAD) se define como el margen de desviación de los tiempos de inicio de las actividades de un proyecto, con relación a sus duraciones. La RAD está basada en el concepto tradicinal que busca minimizar la diferencia entre los tiempos de inicio planeados y los tiempos de inicio realmente ejecutados. Los tiempos de inicio planeados fueron obtenidos a partir de la línea-base generada para el proyecto, y los tiempos de inicio realmente ejecutados fueron obtenidos a partir de un proceso de simulación basado en la técnica de Monte Carlo. El nuevo indicador fue utilizado para evaluar la robustez de tres líneas-base generadas por diferentes métodos, pero aplicados a un mismo caso de estudio. Al final pudo concluirse que la desviación media relativa (RAD) facilita la interpretación del concepto de robustez, debido a que se focaliza en analizar el margen de desviación por actividad en cada línea-base.
Palabras clave
administración de proyectos, análisis de riesgos, programación lineal, robustez, simulación
Referencias
[1] D. G. Malcolm, J. H. Roseboom, C. E. Clark, and W. Fazar, “Application of a Technique for Research and Development Program Evaluation,” Operations Research, vol. 7 (5). pp. 646-669, 1959. https://doi.org/10.1287/opre.7.5.646.
[2] P. Pontrandolfo, “Project Duration in Stochastic Networks by the PERT-Path Technique,” Int. J. Proj. Manag., vol. 18, pp. 215-222, 2000. https://doi.org/10.1016/S0263-7863(99)00015-0.
[3] D.-E. Lee, “Probability of Project Completion Using Stochastic Project Scheduling Simulation,” J. Constr. Eng. Manag., vol. 131 (3), pp. 310-318, 2005. https://doi.org/10.1061/(ASCE)0733-9364(2005)131:3(310).
[4] E. M. Goldratt, Critical Chain. Great Barrington MA: The North River Press Publishing Corporation, 1997.
[5] S. Van de Vonder, E. Demeulemeester, W. Herroelen, and R. Leus, “The Use of Buffers in Project Management: The Trade-off between Stability and Makespan,” Int. J. Prod. Econ., vol. 97, pp. 227–240, 2005. https://doi.org/10.1016/j.ijpe.2004.08.004.
[6] K. Rezaie, B. Manouchehrabadi, and S. N. Shirkouhi, “Duration Estimation, a New Approach in Critical Chain Scheduling,” in Proceedings-2009 3rd Asia International Conference on Modelling and Simulation, 2009, pp. 481-484. https://doi.org/10.1109/AMS.2009.67.
[7] L. Bie, N. Cui, and X. Zhang, “Buffer Sizing Approach with Dependence Assumption between Activities in Critical Chain Scheduling,” in POMS 22nd Annual Conference, 2011. https://doi.org/10.1080/00207543.2011.649096.
[8] H. Ke, and B. Liu, “Project Scheduling Problem with Stochastic Activity Duration Times,” Appl. Math. Comput., vol. 168 (1), pp. 342-353, 2005. https://doi.org/10.1016/j.amc.2004.09.002.
[9] H. Ke, W. Ma, and X. Chen, “Modeling Stochastic Project Time-Cost Trade-Offs with Time-Dependent Activity Durations,” Appl. Math. Comput., vol. 218 (18), pp. 9462–9469, 2012. https://doi.org/10.1016/j.amc.2012.03.035.
[10] W. J. Gutjahr, C. Strauss, and E. Wagner, “A Stochastic Branch and Bound Approach to Activity Crashing in Project Management,” INFORMS J. Comput., vol. 12 (2), pp. 125-135, 2000. https://doi.org/10.1287/ijoc.12.2.125.11894.
[11] P. Jaskowski, and S. Biruk, “The Method for Improving Stability of Construction Project Schedules through Buffer Allocation,” Technol. Econ. Dev. Econ., vol. 17 (3), pp. 429-444, 2011. https://doi.org/10.3846/20294913.2011.580587.
[12] L. Valadares Tavares, J. A. Antunes Ferreira, and J. Silva Coelho, “On the Optimal Management of Project Risk,” Eur. J. Oper. Res., vol. 107 (2), pp. 451-469, 1998. https://doi.org/10.1016/S0377-2217(97)00344-5.
[13] H. Mizuyama, “A Time Quality Tradeoff Problem of a Project with Nonstandardized Activities,” in 36th International Conference on Computers and Industrial Engineering, ICC and IE, 2006, pp. 3039-3049.
[14] G. Mitchell, and T. Klastorin, “An Effective Methodology for the Stochastic Project Compression Problem,” IIE Trans., vol. 39 (10), pp. 957-969, 2007. https://doi.org/10.1080/07408170701315347.
[15] S. Creemers, R. Leus, and M. Lambrecht, “Scheduling Markovian PERT Networks to Maximize the Net Present Value,” Oper. Res. Lett., vol. 38 (1), pp. 51-56, 2010. https://doi.org/10.1016/j.orl.2009.10.006.
[16] D. Kong, L. Liu, R. Miao, and L. Yin, “Risk Prediction of Project Scheduling Based Cloud Model,” in IEEE International Conference on Service Operations and Logistics, and Informatics, 2008, pp. 2553-2557. https://doi.org/10.1109/SOLI.2008.4682966.
[17] S. Biruk, and P. Jaskowski, “Simulation Modelling Construction Project with Repetitive Tasks Using Petri Nets Theory,” J. Bus. Econ. Manag., vol. 9 (3), pp. 219-226, 2008. https://doi.org/10.3846/1611-1699.2008.9.219-226.
[18] I. Bendavid, and B. Golany, “Setting Gates for Activities in the Stochastic Project Scheduling Problem through the Cross Entropy Methodology,” Ann. Oper. Res., vol. 189 (1), pp. 25-42, 2011. https://doi.org/10.1007/s10479-009-0579-3.
[19] I. Bendavid, and B. Golany, “Predetermined Intervals for Start Times of Activities in the Stochastic Project Scheduling Problem,” Ann. Oper. Res., vol. 186 (1), pp. 429-442, 2011. https://doi.org/10.1007/s10479-010-0733-y.
[20] M. Mohammadi, M. Sayed, and M. Mohammad, “Scheduling New Product Development Projects Using Simulation-Based Dependency Structure Matrix,” Int. J. logisctics Syst. Manag., vol. 19 (3), pp. 311-328, 2014. https://doi.org/10.1504/IJLSM.2014.065499.
[21] J. Zhang, X. Song, H. Chen, and R. S. Shi, “Determination of Critical Chain Project Buffer Based on Information Flow Interactions,” J. Oper. Res. Soc., pp. 1-12, 2016. https://doi.org/10.1057/jors.2016.9.
[22] E. D. Gálvez, S. F. Capuz-Rizo, and J. B. Ordieres, “A Method for Identification of Critical Scheduling Decisions,” J. Mod. Proj. Manag., vol. 5 (1), pp. 46-61, 2017. https://doi.org/10.19255/JMPM01305.
[23] M. Brčić, D. Kalpic, and K. Fertalj, “Resource Constrained Project Scheduling under Uncertainty: A Survey,” in 23rd Central European Conference on Information and Intelligent Systems, pp. 401-409, 2012.
[24] S. Rostami, S. Creemers, and R. Leus, “New Strategies for Stochastic Resource-Constrained Project Scheduling,” J. Sched., vol. 20 (1), pp. 1-17, 2017. https://doi.org/10.1007/s10951-016-0505-x.
[25] W. Herroelen, and R. Leus, “The Construction of Stable Project Baseline Schedules,” Eur. J. Oper. Res., vol. 156 (3), pp. 550-565, 2004. https://doi.org/10.1016/S0377-2217(03)00130-9.
[26] V. J. Leon, S. D. Wu, and R. H. Storer, “Robustness Measures and Robust Scheduling for Job Shops,” IIE Trans. Institute Ind. Eng., vol. 26 (5), pp. 32-43, 1994. https://doi.org/10.1080/07408179408966626.
[27] H. Chtourou, and M. Haouari, “A Two-Stage-Priority-Rule-Based Algorithm for Robust Resource-Constrained Project Scheduling,” Comput. Ind. Eng., vol. 55 (1), pp. 183-194, 2008. https://doi.org/10.1016/j.cie.2007.11.017.
[28] O. Hazir, M. Haouari, and E. Erel, “Robust Scheduling and Robustness Measures for the Discrete Time/Cost Trade-Off Problem,” Eur. J. Oper. Res., vol. 207 (2), pp. 633-643, 2010. https://doi.org/10.1016/j.ejor.2010.05.046.
[29] M. A. Khemakhem, and H. Chtourou, “Efficient Robustness Measures for the Resource-Constrained Project Scheduling Problem,” Int. J. Ind. Syst. Eng., vol. 14 (2), p. 245, 2013. https://doi.org/10.1504/IJISE.2013.053738.
[30] R. Kolisch, and A. Sprecher, “PSPLIB - A Project Scheduling Problem Library,” Eur. J. Oper. Res., vol. 96 (1), pp. 205-216, 1996. https://doi.org/10.1016/S0377-2217(96)00170-1.
[31] J. Xiong, J. Liu, Y. Chen, and H. A. Abbass, “A Knowledge-Based Evolutionary Multiobjective Approach for Stochastic Extended Resource Investment Project Scheduling Problems,” IEEE Trans. Evol. Comput., vol. 18 (5), pp. 742-763, 2014. https://doi.org/10.1109/TEVC.2013.2283916.
[32] Ö. Ökmen, and A. Özta, “Judgmental Risk Analysis Process Development in Construction Projects,” vol. 40, pp. 1244-1254, 2005. https://doi.org/10.1016/j.buildenv.2004.10.013.
[33] A. Zafra-Cabeza, M. A. Ridao, and E. F. Camacho, “Using a Risk-Based Approach to Project Scheduling: A Case Illustration from Semiconductor Manufacturing,” Eur. J. Oper. Res., vol. 190 (3), pp. 708-723, 2008. https://doi.org/10.1016/j.ejor.2007.06.021.
[34] S. Mansoorzadeh, S. M. Yusof, S. Mansoorzadeh, and H. Zeynal, “A Comprehensive and Practical Framework for Reliable Scheduling in Project Management,” Adv. Mater. Res., vol. 903, pp. 378-383, 2014. https://doi.org/10.4028/www.scientific.net/AMR.903.378.
[35] J. Zhang, R. Shi, and E. Díaz, “Dynamic Monitoring and Control of Software Project Effort Based on an Effort Buffer,” J. Oper. Res. Soc., vol. 66 (9), pp. 1555-1565, 2015. https://doi.org/10.1057/jors.2014.125.
[36] M. M. Cervantes, F. Barber-Sanchís, and A. Lova-Ruiz, Nuevos métodos metaheurísticos para la asignación eficiente, optimizada y robusta de recursos limitados. Valencia: Universidad Politécnica de Valencia, 2010.