Skip to main navigation menu Skip to main content Skip to site footer

Comparison in vitro of cytocompatibility between fibroin and polypropylene biomaterials

Abstract

This study evaluates the cell behavior of HeLa cells in vitro on fibroin and polypropylene. In order to determine cell proliferation in culture much fibroin material such as polypropylene, as the number of cells / sample was performed by the metabolic reduction of  3-(4,5- dimetiltiazol-2-ilo)-2,5-difeniltetrazol Bromide, MTT assay, using direct and indirect evidence of cytotoxicity. For direct and indirect testing of cytotoxicity in fibroin and polypropylene material, a statistical difference was found in the average number of live cells for fibroin sample regardless of the type of test (p<0.005). By the use of in vitro methods, it is shown that fibroin material has better cell behavior in terms of viability, compared with polypropylene.

Keywords

biomaterials, cell enlargement, fibroin, propylene polymers, silk

PDF XML

References

  1. N. Sawatjui, T. Damrongrungruang, W. Leeanansaksiri, P. Jearanaikoon, and T. Limpaiboon, “Fabrication and characterization of silk fibroin–gelatin/chondroitin ulfate/hyaluronic acid scaffold for biomedical applications,” Materials Letters, vol. 126 (1), pp. 207-210, Jul. 2014. DOI: http://doi.org/10.1016/j.matlet.2014.04.018. DOI: https://doi.org/10.1016/j.matlet.2014.04.018
  2. G. Lai, K. Shalumon, S. Chen, and J. Chen, “Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells,” Carbohydr Polym, vol. 111 (1), pp. 288-97, Oct. 2014. DOI: http://doi.org/10.1016/j.carbpol.2014.04.094. DOI: https://doi.org/10.1016/j.carbpol.2014.04.094
  3. F. G. Omenetto, and D. L. Kaplan, “New Opportunities for an Ancient Material,” Science, vol. 329 (5991), pp. 528-531, Jul. 2010. DOI: http://doi.org/10.1126/science.1188936. DOI: https://doi.org/10.1126/science.1188936
  4. Y. Cao, and B. Wang, “Biodegradation of Silk Biomaterials,” Int J Mol Sci, vol. 10 (4), pp. 1514-1524, Mar. 2009. DOI: http://doi.org/10.3390/ijms10041514. DOI: https://doi.org/10.3390/ijms10041514
  5. H. Jin, J. Park, R. Valluzi, P. Cebe, and D. Kaplan, “Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide),” Biomacromolecules, vol. 5 (3), pp. 711-717, May. 2004. DOI: http://doi.org/10.1021/bm0343287. DOI: https://doi.org/10.1021/bm0343287
  6. S. Hofmann, C. Foo, F. Rossetti, M. Textor, N. Vunjak, D. Kaplan, H. Merkle, and. Meinel, “Silk fibroin as an organic polymer for controlled drug delivery,” J Control Release, vol. 111 (1-2), pp. 219-227, Mar. 2006. DOI: http://doi.org/10.1016/j.jconrel.2005.12.009. DOI: https://doi.org/10.1016/j.jconrel.2005.12.009
  7. U. Kim, J. Park, H. Kim, M. Wada, and D. Kaplan, “Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin,” Biomaterials, vol. 26 (15), pp. 2775-85, May. 2005. DOI: http://doi.org/10.1016/j.biomaterials.2004.07.044. DOI: https://doi.org/10.1016/j.biomaterials.2004.07.044
  8. R. Unger, A. Sartoris, K. Peters, A. Motta, C. Migliare, M. Kunkel, U. Bulnheim, J. Rychly, and C. Kirkpatrick, “Tissue-like self-assembly in cocultures ofendothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials,” Biomaterials, vol. 28 (27), pp. 3965-3976, Sep. 2007. DOI: http://doi.org/10.1016/j.biomaterials.2007.05.032. DOI: https://doi.org/10.1016/j.biomaterials.2007.05.032
  9. Y. Yang, X. Chen, F. Ding, P. Zhang, J. Liu, and X. Gu, “Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro,” Biomaterials, vol. 28 (9), pp. 1643-1652, Mar. 2007. DOI: http://doi.org/10.1016/j.biomaterials.2006.12.004. DOI: https://doi.org/10.1016/j.biomaterials.2006.12.004
  10. H. Kim, L. Che, Y. Ha, and W. Ryu, “Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles,” Mater Sci Eng C Mater Biol Appl., vol. 40 (1), pp. 324-35, Jul. 2014. DOI: http://doi.org/10.1016/j.msec.2014.04.012. DOI: https://doi.org/10.1016/j.msec.2014.04.012
  11. H. Kim, U. Kim, H. Kim, C. Li, M. Wada, G. Leisk, and D. Kaplan, “Bone tissue engineering with premineralized silk scaffolds,” Bone, vol. 42 (6), pp. 1226-1234, Jun. 2008. DOI: http://doi.org/10.1016/j.bone.2008.02.007. DOI: https://doi.org/10.1016/j.bone.2008.02.007
  12. S. Sahoo, S. Toh, and J. Goh , “A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells,” Biomaterials, vol. 31 (11), pp. 2990-2998, Apr. 2010. DOI: http://doi.org/10.1016/j.biomaterials.2010.01.004. DOI: https://doi.org/10.1016/j.biomaterials.2010.01.004
  13. M. Wolf, C. Dearth, C. Ranallo, S. LoPresti, L. Carey, K. Daly, B. Brown, and S. Badylak, “Macrophage polarization in response to ECM coated polypropylene mesh,” Biomaterials, vol. 35 (25), pp. 6838-6849, Aug. 2014. DOI: http://doi.org/10.1016/j.biomaterials.2014.04.115. DOI: https://doi.org/10.1016/j.biomaterials.2014.04.115
  14. W. Cobb, K. Kercher, and B. Heniford, “The argument for lightweight polypropylene mesh in hernia repair,” Surg Innov, vol. 12 (1), pp. 63-69, Mar. 2005. DOI: http://doi.org/10.1177/155335060501200109. DOI: https://doi.org/10.1177/155335060501200109
  15. A. McNally, and J. Anderson, “Macrophage fusion and multinucleated giant cells of inflammation,” Adv Exp Med Biol, vol. 713 (1), pp. 97-111, 2011. DOI: http://doi.org/10.1007/978-94-007-0763-4_7. DOI: https://doi.org/10.1007/978-94-007-0763-4_7
  16. J. M. Anderson, A. Rodriguez, and D. T. Chang, “Foreign body reaction to biomaterials,” Semin Immunol, vol. 20 (2), pp. 86-10, Apr. 2008. DOI: http://doi.org/10.1016/j.smim.2007.11.004. DOI: https://doi.org/10.1016/j.smim.2007.11.004
  17. D. Rockwood, R. Preda, T. Yücel, X. Wang, M. Lovett, and D. Kaplan , “Materials fabrication from Bombyx mori silk fibroin,” Nat Protoc, vol. 6 (10), pp. 1612-1631, Sep. 2011. DOI: http://doi.org/10.1038/nprot.2011.379. DOI: https://doi.org/10.1038/nprot.2011.379
  18. S. Farè, P. Torricelli, G. Giavaresi, S. Bertoldi, A. Alessandrino, T. Villa, M. Fini, M. C. Tanzi, and G. Freddi, “In vitro study on silk fibroin textile structure for Anterior Cruciate Ligament regeneration,” Materials Science and Engineering: C, vol. 33 (7), pp. 3601-3608, Oct. 2013. DOI: http://doi.org/10.1016/j.msec.2013.04.027. DOI: https://doi.org/10.1016/j.msec.2013.04.027
  19. P. Amornsudthiwat, R. Mongkolnavin, S. Kanokpanont, J. Panpranot, C. Wong, and S. Damrongsakkul, “Improvement of early cell adhesion on Thai silk fibroin surface by low energy plasma,” Colloids Surf B Biointerfaces, vol. 111 (1), pp. 579-586, Nov. 2013. DOI: http://doi.org/10.1016/j.colsurfb.2013.07.009. DOI: https://doi.org/10.1016/j.colsurfb.2013.07.009
  20. G. Sternschuss, D. Ostergard, and H. Patel, “Post-implantation alterations of polypropylene in the human,” J Urol, vol. 188 (1), pp. 27-32, Jul. 2012. DOI: http://doi.org/10.1016/j.juro.2012.02.2559. DOI: https://doi.org/10.1016/j.juro.2012.02.2559
  21. D. Zhang, Z. Y. Lin, R. Cheng, W. Wu, J. Yu, X. Zhao, X. Chen, and W. Cui, “Reinforcement of transvaginal repair using polypropylene mesh functionalized with basic fibroblast growth factor,” Colloids and Surfaces B: Biointerfaces, vol. 142 (1), pp. 10-19, 2016. DOI: http://doi.org/10.1016/j.colsurfb.2016.02.034. DOI: https://doi.org/10.1016/j.colsurfb.2016.02.034
  22. B. Brown, D. Mani, A. Nolfi, R. Liang, S. Abramowitch, and P. Moalli, “Characterization of the host inflammatory response following implantation of prolapse mesh in rhesus macaque,” American Journal of Obstetrics and Gynecology, vol. 213 (15), pp. 668.e1–668.e10, 2015. DOI: http://doi.org/10.1016/j.ajog.2015.08.002. DOI: https://doi.org/10.1016/j.ajog.2015.08.002
  23. I. Hejazi, J. Seyfi, E. Hejazi, G. Sadeghi, S. Jafar, and H. Khonakdar, “Investigating the role of surface micro/nano structure in cell adhesion behavior of superhydrophobic polypropylene/nanosilica surfaces,” Investigating the role of surface micro/nano structure in cell adhesion behavior of superhydrophobic polypropylene/nanosilica surfaces, vol. 127 (1), pp. 233-240, 2015. DOI: https://doi.org/10.1016/j.colsurfb.2015.01.054
  24. Y. Maghdouri-White, G. Bowlin, C. Lemmon, and D. Dréau, “Mammary epithelial cell adhesion, viability, and infiltration on blended or coated silk fibroin–collagen type I electrospun scaffolds,” Materials Science and Engineering: C, vol. 43 (1), pp. 37-44, Oct. 2014. DOI: http://doi.org/10.1016/j.msec.2014.06.037. DOI: https://doi.org/10.1016/j.msec.2014.06.037
  25. H. Sakagami, M. Satoh, Y. Yokote, H. Takano, M. Takahama, M. Kochi, and K. Akahane, “Amino acid utilization during cell growth and apoptosis induction,” Anticancer Res, vol. 18 (6), pp. 4303-4306, Nov. 1998.
  26. S. Sofia, M. McCarthy , G. Gronowicz, and D. Kaplan , “Functionalized silk-based biomaterials for bone formation,” Journal of biomedical materials research, vol. 54 (1), pp. 139-148, 2001. DOI: http://doi.org/10.1002/1097-4636(200101)54:1<139::AID-JBM17>3.0.CO;2-7.
  27. L. Jia, L. Guo, J. Zhu, and Y. Ma, “Stability and cytocompatibility of silk fibroin-capped gold nanoparticles,” Mater Sci Eng C Mater Biol Appl, vol. 43 (1), pp. 231-236, Oct. 2014. DOI: http://doi.org/10.1016/j.msec.2014.07.024. DOI: https://doi.org/10.1016/j.msec.2014.07.024
  28. W. Cui, J. Li, Y. Zhang, H. Rong, W. Lu, and L. Jiang, “Effects of aggregation and the surface properties of gold nanoparticles on cytotoxicity and cell growth,” Nanomedicine, vol. 8 (1), pp. 46-53, Jan. 2012. DOI: http://doi.org/10.1016/j.nano.2011.05.005. DOI: https://doi.org/10.1016/j.nano.2011.05.005
  29. C. Zhang, J. Jin, J. Zhao, W. Jiang, and J. Yin, “Functionalized polypropylene non-woven fabric membrane with bovine serum albumin and its hemocompatibility enhancement,” Colloids Surf B Biointerfaces, vol. 102 (1), pp. 45-52, Feb. 2013. DOI: http://doi.org/10.1016/j.colsurfb.2012.08.007. DOI: https://doi.org/10.1016/j.colsurfb.2012.08.007
  30. A. Prudente, C. L. Riccetto, M. M. Simões, B. M. Pires, and M. G. de Oliveira, “Impregnation of implantable polypropylene mesh with S-nitrosoglutathione-loaded poly(vinyl alcohol),” Colloids Surf B Biointerfaces, vol. 108 (1), pp. 178-184, Aug. 2013. DOI: http://doi.org/10.1016/j.colsurfb.2013.02.018. DOI: https://doi.org/10.1016/j.colsurfb.2013.02.018
  31. N. Gomathi, R. Rajasekar, R. Rajesh Babu, D. Mishra, and S. Neogi, “Development of bio/blood compatible polypropylene through low pressure nitrogen plasma surface modification,” Materials Science and Engineering: C, vol. 32 (7), pp. 1767-1778, Oct. 2012. DOI: http://doi.org/10.1016/j.msec.2012.04.034. DOI: https://doi.org/10.1016/j.msec.2012.04.034

Downloads

Download data is not yet available.