Skip to main navigation menu Skip to main content Skip to site footer

a EXPLORATION OF CHEMICAL ACTIVATION USING Mg AND Ca CHLORIDES FOR OBTAINING BIOCHARS FROM SOURSOP SEEDS (Annona muricata).: EXPLORATION OF CHEMICAL ACTIVATION USING Mg AND Ca CHLORIDES FOR OBTAINING BIOCHARS FROM SOURSOP SEEDS (Annona muricata).

Abstract

The capture of CO2 for subsequent use in the synthesis of high-value-added products using biochars is a solution with significant potential to address environmental issues. However, the results are strongly dependent on the synthesis process and the addition of compounds that impregnate the carbon surface with the metal from the salt used. To assess the influence of salt on the precursor during pyrolysis, concentrations of 5% and 8% of metallic chlorides (CaCl2 and MgCl2) were employed on pre-cleaned and dried soursop seeds. The objective was to investigate how salt impacts the textural characteristics of the resulting biochars concerning thermal conditions. This process yielded five solids, which were subjected to various characterization techniques.

 

The results revealed that these solids function as CO2 adsorbents, with BET surface areas ranging from 140 to 285 m2/g, as determined by CO2 analysis. Furthermore, the quantities of adsorbed CO2 showed variations in the performance of each sample. Additionally, DRIFT analysis of CO2 showed sharp peaks corresponding to specific CO2 adsorptions, particularly in solids activated with CaCl2. The employed characterization techniques facilitated the identification of potential methods to enhance basicity and surface area in solids that exhibited lower performance.


References

  1. M. A. Yahya, Z. Al-Qodah, and C. W. Z. Ngah, “Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review,” Renew. Sustain. Energy Rev., vol. 46, pp. 218–235, 2015, doi: 10.1016/j.rser.2015.02.051.
  2. M. do C. Rangel, F. M. Mayer, M. da S. Carvalho, G. Saboia, and A. M. de Andrade, “Selecting Catalysts for Pyrolysis of Lignocellulosic Biomass,” Biomass, vol. 3, no. 1, pp. 31–63, 2023, doi: 10.3390/biomass3010003.
  3. D. P. Vargas, L. Giraldo, and J. C. Moreno-Piraján, “CO2 adsorption on activated carbon honeycomb-monoliths: A comparison of Langmuir and Tóth models,” Int. J. Mol. Sci., vol. 13, no. 7, pp. 8388–8397, 2012, doi: 10.3390/ijms13078388.
  4. B. B. Vera Raza, R. A. Mero Intriago, G. A. Burgos Briones, and R. E. Cevallos Cedeño, “Lignocellulosic waste and activated carbon production method,” Minerva, vol. 1, no. Special, pp. 122–130, 2022, doi: 10.47460/minerva.v1ispecial.87.
  5. M. Lay, A. Rusli, M. Khalil, Z. Ain, A. Hamid, and R. Khimi, “Converting dead leaf biomass into activated carbon as a potential replacement for carbon black filler in rubber composites,” Compos. Part B, vol. 201, no. August, p. 108366, 2020, doi: 10.1016/j.compositesb.2020.108366.
  6. A. C. Lua, “A comparative study of the pore characteristics and phenol adsorption performance of activated carbons prepared from oil-palm shell wastes by steam and combined steam-chemical activation,” Green Chem. Eng., no. September, 2023, doi: 10.1016/j.gce.2022.11.004.
  7. B. Flores, C. Chacón, and B. Galia, “El desarrollo sostenible y la agenda 21 Sustainable Development , Agenda 21,” Agenda, vol. 11, no. 2, pp. 164–181, 2009, [Online]. Available: https://www.redalyc.org/pdf/993/99312517003.pdf
  8. A. S. Ello, L. K. C. De Souza, A. Trokourey, and M. Jaroniec, “Development of microporous carbons for CO2 capture by KOH activation of African palm shells,” J. CO2 Util., vol. 2, pp. 35–38, 2013, doi: 10.1016/j.jcou.2013.07.003.
  9. E. Yagmur, Y. Gokce, S. Tekin, N. I. Semerci, and Z. Aktas, “Characteristics and comparison of activated carbons prepared from oleaster (Elaeagnus angustifolia L.) fruit using KOH and ZnCl2,” Fuel, vol. 267, no. September 2019, p. 117232, 2020, doi: 10.1016/j.fuel.2020.117232.
  10. S. Alberto and A. Corredor, “Preparación y caracterización de carbón activado granular obtenido a partir de cuesco de palma africana (Elaeis Guineensis) para la adsorción de CO2,” 2014.
  11. D. P. Vargas, L. Giraldo, and J. C. Moreno-Piraján, “Accessible area and hydrophobicity of activated carbons obtained from the enthalpy characterization,” Adsorption, vol. 22, no. 1, pp. 3–11, Jan. 2016, doi: 10.1007/s10450-015-9721-5.
  12. W. J. Liu, H. Jiang, K. Tian, Y. W. Ding, and H. Q. Yu, “Mesoporous carbon stabilized MgO nanoparticles synthesized by pyrolysis of MgCl2 preloaded waste biomass for highly efficient CO2 capture,” Environ. Sci. Technol., vol. 47, no. 16, pp. 9397–9403, Aug. 2013, doi: 10.1021/es401286p.
  13. L. Proaño, E. Tello, M. A. Arellano-trevino, S. Wang, R. J. Farrauto, and M. Cobo, “Applied Surface Science In-situ DRIFTS study of two-step CO2 capture and catalytic methanation over,” Appl. Surf. Sci., vol. 479, no. October 2018, pp. 25–30, 2019, doi: 10.1016/j.apsusc.2019.01.281.
  14. H. A. Rojas, J. J. Martínez, M. H. Brijaldo, and F. Passos, “Producción de alcohol cinamílico a partir de la hidrogenación selectiva de cinamaldehído usando catalizadores de oro soportados en óxidos metálicos,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 43, no. 168, pp. 539–549, 2019, doi: 10.18257/raccefyn.852.
  15. F. Rodríguez-Reinoso and J. Silvestre-Albero, Nanoporous Materials for Gas Storage. 2019.
  16. B. Petrovic, M. Gorbounov, and S. Masoudi Soltani, “Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods,” Microporous Mesoporous Mater., vol. 312, no. October 2020, p. 110751, 2021, doi: 10.1016/j.micromeso.2020.110751.
  17. L. Sanabria, C. Lederhos, M. Quiroga, and J. Cubillos, “Pt and Pd on activated carbon for oxidation of Pt y Pd soportado en carbón activado para la oxidación de,” vol. 43, no. 2, pp. 37–43, 2017.
  18. S. Acevedo, L. Giraldo, and J. C. Moreno, “Caracterização textural e química de carvões ativados prearados a partir de casca da palmeira africana (Elaeis guineensis) por ativação química com CaCl2 y MgCl2,” Rev. Colomb. Quim., vol. 44, no. 3, pp. 18–24, Sep. 2015, doi: 10.15446/rev.colomb.quim.v44n3.55606.
  19. L. M. Esteves, M. H. Brijaldo, and F. B. Passos, “Decomposition of acetic acid for hydrogen production over Pd/Al2O3 and Pd/TiO2: Influence of metal precursor,” J. Mol. Catal. A Chem., vol. 422, pp. 275–288, 2016, doi: 10.1016/j.molcata.2016.02.001.
  20. C. Castañeda, F. Tzompantzi, R. Gómez, and H. Rojas, “Enhanced photocatalytic degradation of 4-chlorophenol and 2,4-dichlorophenol on in situ phosphated sol-gel TiO2,” J. Chem. Technol. Biotechnol., vol. 91, no. 8, pp. 2170–2178, 2016, doi: 10.1002/jctb.4943.
  21. M. H. Brijaldo, S. Mancipe, H. A. Rojas, P. L. Viviana, D. G. Araiza, and G. Díaz, “Effect of boron on the surface properties of nickel supported on hydrotalcite-type mixed oxides in methanol decomposition,” vol. 498, no. October, 2020, doi: 10.1016/j.mcat.2020.111262.
  22. L. Giraldo and J. C. Moreno, “Adsorción de CO2 en carbón activado con diferente grado de activación,” Afinidad, vol. 67, no. 548, 2010.
  23. P. Schroeder, B. P. do Nascimento, G. A. Romeiro, M. K. K. Figueiredo, and M. C. da C. Veloso, “Chemical and physical analysis of the liquid fractions from soursop seed cake obtained using slow pyrolysis conditions,” J. Anal. Appl. Pyrolysis, vol. 124, pp. 161–174, 2017, doi: 10.1016/j.jaap.2017.02.010.
  24. S. Acevedo, L. Giraldo, and J. C. Moreno-Piraján, “Kinetic study of CO2 adsorption of granular-type activated carbons prepared from palm shells,” Environ. Sci. Pollut. Res., pp. 1–10, 2023, doi: 10.1007/s11356-023-26423-5.
  25. J. I. Mora, “Extraction of cellulose and preparation of nanocellulose from sisal fibers,” pp. 149–159, 2008, doi: 10.1007/s10570-007-9145-9.
  26. X. Liu et al., “Preparation of a Carbon-Based Solid Acid Catalyst by Sulfonating Activated Carbon in a Chemical Reduction Process,” vol. 15, pp. 7188–7196, 2010, doi: 10.3390/molecules15107188.
  27. A. Mukhtar, N. Mellon, S. Saqib, S. P. Lee, and M. A. Bustam, “Extension of BET theory to CO2 adsorption isotherms for ultra-microporosity of covalent organic polymers,” SN Appl. Sci., vol. 2, no. 7, pp. 1–4, 2020, doi: 10.1007/s42452-020-2968-9.

Downloads

Download data is not yet available.