Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Selección de cópulas mediante validación cruzada: un estudio de simulación

Resumen

Este artículo presenta una metodología para modelar la asociación entre variables aleatorias continuas utilizando funciones cópula. Las cópulas permiten separar la estructura de dependencia del comportamiento marginal, ofreciendo una aproximación flexible para modelar relaciones complejas entre variables. A través de simulaciones para diferentes distribuciones marginales (Normal, Log-normal, t-Student, Weibull), se evaluaron dos familias de cópulas, tales como las cópulas Elípticas y arquimedianas. La selección del modelo se realizó mediante criterios de información de Akaike (AIC) y Bayesiano (BIC), así como métodos gráficos (Chi-plot y K-plot). Además, se empleó la validación cruzada K-Fold para evaluar el rendimiento de los modelos seleccionados y evitar el sobreajuste. Los resultados sugieren que las cópulas elípticas son más apropiadas para datos simétricos, mientras que las cópulas Arquimedianas muestran mejor ajuste para distribuciones asimétricas. La validación cruzada permitió obtener una estimación más precisa del error de predicción, mejorando la robustez de los modelos seleccionados.


Citas

  1. Referencias
  2. Aas, Kjersti and Czado, Claudia and Frigessi,
  3. Arnoldo and Bakken, Henrik ”Pair-copula
  4. constructions of multiple dependence,
  5. ”Insurance: Mathematics and economics,
  6. vol. 44, no. 2, pp. 182-198, April 2009.
  7. https://doi.org/10.1016/j.insmatheco.2007.02.001
  8. Escarela, Gabriel and Hernández, Angélica,
  9. “Modelado de parejas aleatorias usando cópulas
  10. ”, Revista Colombiana de Estadística, vol. 32,
  11. no. 1, pp. 33-58, junio 2009.
  12. Frees, E. W. and Valdez, E. A. “Understanding
  13. relationships using copulas”. American Actua-
  14. rial Journal, vol. 2, no. 1, pp. 1-25, Jan 1998.
  15. https://doi.org/10.1080/10920277.1998.10595667
  16. Fisher, N. and Switzer, P. “Chi-plots for
  17. assessing dependence”. Biometrika, vol.
  18. , no. 2, pp. 253–265, August 1985.
  19. https://doi.org/10.1093/biomet/72.2.253
  20. Genest, C. and Boies, J.“Detecting dependence
  21. with kendall plots ”. The American Statistician,
  22. (4):275–284. (2003)
  23. Genest, C. and Favre, A.-C.“Everything you
  24. always wanted to know about copula modeling
  25. but were afraid to ask ”. Journal of Hydrolo-
  26. gic Engineering, vol 12, no. 4, pp. 347-368,
  27. Jul 2007. https://doi.org/10.1061/(ASCE)1084-
  28. (2007)12:4(347)
  29. Guarín-Escudero, Julieth V and Jaramillo-
  30. Elorza, Mario C and Lopera-Gómez, Carlos
  31. M “A comparison of two graphical methods for
  32. detecting dependence ”. Ciencia en Desarrollo,
  33. vol 9, no. 1, pp. 71-88, Jan./June 2018.
  34. Hofert, M., Kojadinovic, I., Maechler, M., and
  35. Yan, J. “copula: Multivariate Dependence with
  36. Copulas”, R package version 1.0-1., 2020.
  37. Hofert, Marius and Kojadinovic, Ivan and Mae-
  38. chler, Martin and Yan. “Multivariate Dependen-
  39. ce Modeling with Copulas”, Bernoulli Compu-
  40. te Bernoulli and Eulerian, 2020.
  41. Jordanger, Lars Arne and Tjøstheim,
  42. Dag.“Model selection of copulas: AIC
  43. versus a cross validation copula informa-
  44. tion criterion”. Statistics & Probability
  45. Letters, vol 92, pp. 249-255, september 2014.
  46. https://doi.org/10.1016/j.spl.2014.06.006
  47. Lopera, Carlos and Jaramillo, Mario CÉSAR
  48. and Arcila, Luis David.“Selección de un mo-
  49. delo cópula para el ajuste de datos bivariados
  50. dependientes”. Revista Dyna, vol 76, no 158,
  51. pp. 253-263, May/Aug 2009.
  52. Nelsen, R.“An introduction to copulas.”, Sprin-
  53. ger, 2 edition., 2006.
  54. Moreno, DC and Blanco, L.“Método para
  55. elegir una cópula Arquimediana óptima.”,
  56. Master’s thesis, Universidad Nacional de
  57. Colombia, 2012.
  58. Pérez-Planells, Ll and Delegido, Jesús and
  59. Rivera-Caicedo, Juan Pablo and Verrelst, Jo-
  60. chem. “Análisis de métodos de validación cru-
  61. zada para la obtención robusta de parámetros
  62. biofísicos, Revista de teledetección, 44, pp 55-
  63. , 2015.
  64. R Core Team.“R: A Language and Environ-
  65. ment for Statistical Computing R Foundation
  66. for Statistical Computing, Vienna, Austria,
  67. Sepúlveda, W. and Garzón, L. “Modelación
  68. conjunta de variables meteorológicas medidas
  69. en la estación la sirena en el valle del cauca
  70. a través de funciones cópula. Universidad del
  71. Valle.”, 2017.

Descargas

Los datos de descargas todavía no están disponibles.