Algunas propiedades homológicas del plano de Jordan

Contenido principal del artículo

Autores

Hector Julio Suárez Suárez
Jonatan Andrés Gómez Parada

Resumen

El plano de Jordan puede ser visto como un álgebra cociente, como una extensión de Ore graduada y como una
extensión PBW torcida graduada. Usando estas interpretaciones, se muestra de forma explícita que el plano de Jordan es un álgebra Artin-Schelter regular y Calabi-Yau torcida, además se calcula de forma explícita su automorfismo de Nakayama.

Palabras clave:

Detalles del artículo

Referencias

[1] M. Artin y W. Schelter, “Graded Algebras of Global Dimension 3”, Advances in Mathematics, vol. 66, pp. 171-206, 1987.

[2] N. Andruskiewitsch, I. Angiono, I. Hec-kenberger, “On finite GK-dimensional Nichols algebras over abelian groups”, arXiv:1606.02521v2 [math.QA], 2018.

[3] N. Andruskiewitsch, D. Bagio, S. Della Flo-ra y D. Flôres, “Representations of the super Jordan plane”, São Paulo J. Math. Sci., vol. 11, no. 2, pp. 312-325, 2017.

[4] M. Artin y W. Schelter, “Graded Algebras of Global Dimension 3”, Adv. Math., vol. 66, pp. 171-206, 1987.

[5] E. E. Demidov, Yu. I. Manin, E. E. Mukhin and D. V. Zhdanovich, “Nonstandard quan-tum deformations of GL(n) and constant solutions of the Yang-Baxter equation”, Common trends in mathematics and quan-tum field theories (Kyo-to, 1990). Progr. Theoret. Phys. Suppl., no. 102 (1990), pp. 203 -218 (1991).

[6] C. Gallego y O. Lezama, “Gröbner bases for ideals of σ−PBW extensions”, Comm. Algebra, vol. 39, pp. 50-75, 2011.

[7] V. Ginzburg, “Calabi-Yau algebras”, arXi-v:math . AG/0612139 v3, vol. 51, pp. 329-333, 2006.

[8] N. R. González y Y. P. Suárez, "Ideales en el Anillo de Polinomios Torcidos R[x;σ,δ]", Ciencia en Desarrollo, vol. 5, no. 1, pp. 31-37, 2014.

[9] J. Goodman y U. Krähmer, “Untwisting a twisted Calabi-Yau algebra”, J. Algebra, vol. 406, pp. 272-289, 2014.

[10] D. I. Gurevich, “The Yang-Baxter equation and the generalization of formal Lie theory”, Dokl. Akad. Nauk SSSR, vol. 288, no. 4, pp. 797-801, 1986.

[11] J.W He, F. Oystaeyen y Y. Zhang, “Cala-bi-Yau algebras and their deformations”, Bull. Math. Soc. Sci. Math. Roumanie, vol. 56, no. 3, pp. 335- 347, 2013.

[12] N. Iyudu, “Representation Spaces of the Jordan Plane”, Comm. Algebra, vol. 42, no. 8, pp. 3507-3540, 2014.

[13] S. Korenskii, “Representations of the Quan-tum group SLj(2)”, Rus. Math. Surv, vol. 46, no. 6, pp. 211-212, 1991.

[14] G. R. Krause y T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension,Grad. Stud. Math., 22, AMS (2000).

[15] J. McConnell y J. Robson, Noncommutative Noetherian Rings, Graduate Studies in Ma-thematics, AMS (2001).

[16] O. Lezama y E. Latorre, “Noncommutative algebraic geometry of semigraded rings”, Internat. J. Algebra Comput., vol. 27, no. 4, pp. 361-389, 2017.

[17] L. Liu, S. Wang y Q. Wu, “Twisted Cala-bi-Yau property of Ore extensions”, J. Non-commut. Geom., vol. 8, no. 2, pp. 587-609, 2014.

[18] S. Reca y A. Solotar 2018. “Homological invariants relating the super Jordan plane to the Virasoro algebra”, J. Algebra, vol. 507, pp. 120 -185.

[19] A. Reyes y H. Suárez, “Some remarks about the cyclic homology of skew PBW exten-sion s", Ciencia en Desarrollo, vol. 7, no. 2, pp. 99-107, 2016.

[20] M. Reyes, D. Rogalski y J. J Zhang, “Skew Calabi-Yau algebras and homological identities”, Adv. Math., vol. 264, pp. 308 -354, 2014.

[21] D. Rogalski, “An introduction to non-com-mutative projective algebraic geometry”, arXiv:1403.3065 [math.RA], 2014.

[22] H. Suárez, “Koszulity for graded skew PBW extensions”, Comm. Algebra, vol. 45, no. 10, pp. 4569- 4580, 2017.

[23] H. Suárez, O. Lezama y A. Reyes, “Some Relations between N-Koszul, Artin-Schel-ter Regular and Calabi-Yau with Skew PBW Extensions”, Ciencia en Desarrollo, vol. 6, no. 2, pp. 205- 213, 2015.

[24] H. Suárez, O. Lezama y A. Reyes, “Ca-labi-Yau property for graded skew PBW extensions”, Rev. Colombiana Mat., vol. 51, no. 2, pp. 221-238, 2017.

[25] H. Suárez y A. Reyes, “Koszulity for skew PBW extension over fields”, JP J.Algebra Number Theory Appl., vol. 39, no. 2, pp. 181-203, 2017.

Descargas

La descarga de datos todavía no está disponible.