Algunas propiedades homológicas del plano de Jordan

Some homological properties of Jordan plane

Contenido principal del artículo

Hector Julio Suárez Suárez
Jonatan Andrés Gómez Parada

Resumen

El plano de Jordan puede ser visto como un álgebra cociente, como una extensión de Ore graduada y como una
extensión PBW torcida graduada. Usando estas interpretaciones, se muestra de forma explícita que el plano de Jordan es un álgebra Artin-Schelter regular y Calabi-Yau torcida, además se calcula de forma explícita su automorfismo de Nakayama.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Hector Julio Suárez Suárez, Universidad Pedagógica y Tecnológica de Colombia

Boyacá, Tunja

Referencias (VER)

M. Artin y W. Schelter, “Graded Algebras of Global Dimension 3”, Advances in Mathematics, vol. 66, pp. 171-206, 1987.

C. Gallego y O. Lezama, “Gröbner bases for ideals of s

V. Ginzburg, “Calabi-Yau algebras”, arXiv:math.AG/0612139v3, vol. 51, pp. 329-333, 2006.

N. R. González y Y. P. Suárez, “Ideales en el Anillo de Polinomios Torcidos R[x;s;d]", Ciencia en Desarrollo, vol. 5, no. 1, pp. 31-37, 2014.

J. Goodman y U. Krähmer, “Untwisting a twisted Calabi-Yau algebra”, Journal of Algebra, vol. 406, pp. 272-289, 2014.

J.W He, F. Oystaeyen y Y. Zhang, “Calabi-Yau algebras and their deformations”, Bull. Math. Soc. Sci. Math. Roumanie, vol. 56, no. 3, pp. 335-347, 2013.

S. Korenskii, “Representations of the Quantum group SLj(2)”, Rus.Math.Surv, vol. 46, no. 6, pp. 211-212, 1991.

G. R. Krause y T. H. Lenagan, “Growth of algebras and Gelfand-Kirillov dimension”, American Mathematical Soc., 2000.

O. Lezama and E. Latorre, “Non-commutative algebraic geometry of semi-graded rings”, International Journal of Algebra and Computation, vol. 27, no. 4, pp. 361-389, 2017.

L. Liu, S.Wang y Q.Wu, “Twisted Calabi-Yau property of Ore extensions”, J. Noncommut. Geom., vol. 8, no. 2, pp. 587-609, 2014.

A. Reyes and H. Suárez, “Some remarks about the cyclic homology of skew PBW extensions", Ciencia en Desarrollo, vol. 7, no. 2, pp. 99-107, 2016.

M. Reyes, D. Rogalski y J. J Zhang “Skew Calabi-Yau algebras and homological identities”, Advances in Mathematics, vol. 264, pp.

-354, 2014.

D. Rogalski“ An introduction to noncommutative projective algebraic geometry”, arXiv:1403.3065 [math.RA], 2014.

H. Suárez, “Koszulity for graded skew PBW extensions”, Communications in Algebra, vol. 45, no. 10, pp. 4569-4580, 2017.

H. Suárez, O. Lezama y A. Reyes, “Some Relations between N-Koszul, Artin-Schelter Regular and Calabi-Yau with Skew PBW Extensions”, Revista Ciencia en Desarrollo, vol. 6, no. 2, pp. 205-213, 2015.

H. Suárez, O. Lezama y A. Reyes, “Calabi-Yau property for graded skew PBW extensions”, Revista Colombiana de Matemáticas, vol. 51, no. 2, pp. 221-238, 2017.

H. Suárez y A. Reyes, “Koszulity for skew PBW extension over fields”, JP Journal of Algebra, Number Theory and Applications, vol.

, no. 2, pp. 181-203, 2017.

Citado por: