Skip to main navigation menu Skip to main content Skip to site footer

A note on zeros of orthogonal polynomials generated by canonical transformations

Abstract

In this work, the behavior of zeros of orthogonal polynomials associated with canonical spectral transformations of weight functions on $[0,\infty)$ is studied. Namely, by means of standard techniques, we obtain interlacing properties for zeros associated with some particular cases of rational and Christoffel transformations

Keywords

Orthogonal polynomials, Canonical transformations, Zeros

PDF (Español)

References

  1. E. B. Christoffel, “U¨ ber die Gaussische Quadratur und eine Verallgemeinerung derselben”, Journal f¨ur die reine und angewandte Mathematik, vol. 55, pp. 61-82, 1858. http://eudml.org/doc/147722.
  2. T.S. Chihara, An introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
  3. G. Szeg˝o, Orthogonal Polynomials, 4th ed.American Mathematical Society Colloquim Publication Series,
  4. vol. 23, American Mathematical Society, Providence, RI, 1975.
  5. G.J. Yoon, “Darboux transforms and orthogonal polynomials”, Bull. Korean Math. Soc. vol. 39, pp. 359–
  6. , 2002. https://doi.org/10.4134/BKMS.2002.39.3. 359.
  7. S. Elhay, J. Kautsky, “Jacobi matrices for measures modified by a rational factor”, Numer. Algorithms,
  8. vol. 6, pp. 205-227, 1994. https://doi.org/10.1007/ BF02142672.
  9. B. X. Fejzullahu,R. X. Zejnullahu, “Orthogonal polynomials with respect to the Laguerre measure perturbed
  10. by the canonical transformations”, Integ. Transf. Spec. Funct. vol. 21, pp. 569-580, 2010. https://doi. org/10.1080/10652460903442032.
  11. E. Huertas, F. Marcell´an, B. Xh. Fejnullahu, R.Xh. Zejnullahu, “On orthogonal polynomials with respect
  12. to certain discrete Sobolev inner product”, Pacific J. Math. vol. 257-1, pp. 167-188, 2012. DOI:
  13. 2140/pjm.2012.257.167.
  14. E. J. Huertas, F. Marcell´an, F. R. Rafaeli, “Zeros of orthogonal polynomials generated by canonical perturbations
  15. on measures”, Appl. Math. Comput. vol. 218, pp. 7109–7127, 2012. https://doi.org/10.1016/j.amc.
  16. 12.073.
  17. V. B. Uvarov, “Relation between polynomials orthogonal with different weights”, (in Russian), Dokl. Akad.
  18. Nauk SSSR vol. 126, pp. 33–36, 1959.
  19. V. B. Uvarov, “The connection between systems of polynomials that are orthogonal with respect to different
  20. distributionfunctions”, (in Russian), Z. Vycisl. Mat. i Mat. Fiz. vol. 9, pp. 1253–1262, 1969. [English translation in USSR Comput. Math. Math. Phys. vol. 9, pp. 25–36, 1969]. https://doi.org/10.1016/0041-5553(69)90124-4.
  21. A. Zhedanov, “Rational spectral transformations and orthogonal polynomials”, J. Comput. Appl. Math.
  22. vol. 85, pp. 67–86, 1997. https://doi.org/10.1016/S0377-0427(97)00130-1.
  23. Ya.L. Geronimus, “On the polynomials orthogonal with respect to a given number sequence”, Zap. Mat.
  24. Otdel. Khar’kov. Univers. i NII Mat. i Mehan. vol. 17, pp. 3-18, 1940.
  25. Ya.L. Geronimus, “On the polynomials orthogonal with respect to a given number sequence and a theorem byW. Hahn”, lzv. Akad. Nauk SSSR, vol. 4-2, pp. 215-228, 1940. http://mi.mathnet.ru/eng/izv/v4/i2/p215.
  26. A. Branquinho, F. Marcell´an, “Generating new classes of orthogonal polynomials”, Int. J. Math.
  27. Math. Sci. vol. 19(4), pp. 643–656, 1996. DOI: 10.1155/S0161171296000919.
  28. M.I. Bueno, A. Dea˜no, E. Tavernetti, “A new algorithm for computing the Geronimus transformation with large
  29. shifts”, Numer. Alg. vol. 54, pp. 101–139, 2010. https://doi.org/10.1007/s11075-009-9325-9.
  30. M.I. Bueno, F. Marcell´an, “Darboux transformations and perturbation of linear functionals”, Linear Algebra
  31. Appl. vol. 384, pp. 215–242, 2004. https://doi.org/10.1016/j.laa.2004.02.004
  32. M. Derevyagin, F. Marcell´an, “A note on the Geronimus transformation and Sobolev orthogonal polynomials”,
  33. Numer. Algorithms, vol. 67, pp. 1–17, 2013. https://doi.org/10.1007/s11075-013-9788-6.
  34. W. Gautschi, Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and
  35. Scientific Computation Series. Oxford University Press, New York, 2004.
  36. P. Maroni, “Sur la suite de Polynˆomes Orthogonaux Associ´ee `a la forme u = δ(c)+λ(x−c)−1L”. Period.
  37. Math. Hungar. vol. 21(3), pp. 223–248, 1990. https://doi.org/10.1007/bf02651091.
  38. V. Spiridonov, A. Zhedanov, “Discrete-time Volterra chain and classical orthogonal polynomials”, J. Phys. A. Math. Gen. vol. 30-24, pp. 8727–8737, 1997. DOI 10.1088/0305-4470/30/24/031.
  39. B. X. Fejzullahu, “Asymptotics for orthogonal polynomials with respect to the Laguerre measure modified by a rational factor”, Acta Sci. Math. .Szeged. vol. 77, pp. 73–85, 2011. https://doi.org/10.1007/BF03651367.
  40. D. Galant, “An implementation of Christoffel’s theorem in the theory of orthogonal polynomials”, Math. Comp. vol. 25, pp. 111–113, 1979. DOI:10.1090/S0025-5718-1971-0288954-8.
  41. D. Galant, “Algebraic methods for modified orthogonal polynomials”, Math. Comp. 59, pp. 541–546,
  42. DOI: https://doi.org/10.1090/S0025-5718-1992-1140648-6.
  43. W. Gautschi, “An algorithmic implementation of the generalized Christoffel theorem”, in: G. H¨ammerlin (Ed.), Numerical Integration, Internat. Ser. Numer. Math., vol. 57, Birkh¨auser, Basel, pp. 89–106, 1982. https://doi.org/10.1007/978-3-0348-6308-79
  44. C.F. Bracciali, D.K. Dimitrov, A. Sri Ranga, “Chain sequences and symmetric generalized orthogonal polynomials”, J. Comput. Appl. Math. vol.143, pp. 95- 106, 2002. https://doi.org/10.1016/S0377-0427(01)00499-X.
  45. C. Brezinski, K. Driver, M. Redivo-Zaglia, ”Quasiorthogonality with applications to some families of
  46. classical orthogonal polynomials”, Appl. Numer. Math. vol. 48, pp. 157–168, February 2004. https://doi.org/
  47. 1016/j.apnum.2003.10.001.
  48. J.A. Shohat, .On mechanical quadratures, in particular, with positive coefficients”, Trans. Amer. Math. Soc.
  49. vol 42-3, pp. 461–496, November 1937. https://doi.org/10.2307/1989740.
  50. W. Van Assche, .Orthogonal polynomials, associated polynomials and functions of the second kind”, J. Comput.
  51. Appl. Math. vol. 37, pp. 237-249, November 1991. https://doi.org/10.1016/0377-0427(91)90121-Y.

Downloads

Download data is not yet available.