Skip to main navigation menu Skip to main content Skip to site footer

Equilibrium and thermodynamics of Chromium (VI) adsorption on inert biomasses of Dioscorea rotundata and Elaeis guineensis

Abstract

Adsorption equilibrium on bioadsorbents was studied, and fitted to Langmuir, Freundlich and Dubinin-Radushkevich isothermal models, using yam peels (YP) and oil palm wastes (OPW) as bioadsorbents in the removal of hexavalent chromium present in aqueous solution, in a batch system, evaluating the effect of temperature, adsorbent dose and particle size on the process. Thermodynamic parameters were estimated by the Van't Hoff graphical method. It was found that the highest adsorption capacity was obtained at 0.03 g of adsorbent, 55 ºC and 0.5 mm of particle size. The equilibrium of adsorption on OPW is described by Langmuir and Freundlich isotherms, while that of YP by Dubinin-Radushkevich's model, indicating the adsorption is given by the ion exchange between the active centers and the metallic ion. The thermodynamic study determined that the elimination of YP is endothermic, irreversible, and not spontaneous and that for OPW it is exothermic, spontaneous at low temperatures, and irreversible.

Keywords

Bioadsorption, Langmuir, Freundlich, Dubinin-Radushkevich

PDF (Español)

References

  1. M. Manjuladevi, R. Anitha, and S. Manonmani, “Kinetic study on adsorption of Cr (VI), Ni (II), Cd (II) and Pb (II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel,” Appl. Water Sci., vol. 8, no. 1, p. 36, 2018, doi: 10.1007/s13201-018-0674-1.
  2. M. Feizi and M. Jalali, “Removal of heavy metals from aqueous solutions using sunflower, potato, canola and walnut shell residues,” J. Taiwan Inst. Chem. Eng., vol. 54, pp. 125–136, 2015, doi: 10.1016/j.jtice.2015.03.027.
  3. D. L. Gómez-Aguilar, J. P. Rodríguez-Miranda, J. A. Esteban-Muñóz, and J. F. Betancur, “Coffee Pulp: A Sustainable Alternative Removal of Cr (VI) in Wastewaters. Processes,” Processes, vol. 7, no. 7, p. 403, 2019, doi: 10.3390/pr7070403.
  4. P. Premkumar and R. Sudha, “Comparative studies on the removal of chromium (VI) from aqueous solutions using raw and modified Citrus Limettioides peel,” Indian J. Chem. Technol., vol. 25, no. 3, pp. 255–265, 2018.
  5. N. Nordin, N. A. A. Asmadi, M. K. Manikam, A. A. Halim, M. M. Hanafiah, and S. N. Hurairah, “Removal of Hexavalent Chromium from Aqueous Solution by Adsorption on Palm Oil Fuel Ash (POFA),” J. Geosci. Environ. Prot., vol. 08, no. 02, pp. 112–127, 2020, doi: 10.4236/gep.2020.82008.
  6. B. A. Bhanvase, R. P. Ugwekar, and R. B. Mankar, Novel Water Treatment and Separation Methods : Simulation of Chemical Processes. 2017.
  7. H. N. Tran et al., “Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: A systematic in-depth review,” J. Hazard. Mater., vol. 373, pp. 258–270, 2019, doi: 10.1016/j.jhazmat.2019.03.018.
  8. J. Núñez-Zarur, C. Tejada-Tovar, A. Villabona-Ortíz, D. Acevedo, and R. Tejada-Tovar, “Thermodynamics, Kinetics and Equilibrium Adsorption of Cr (VI) and Hg (II) in Aqueous Solution on corn cob (Zea mays),” Int. J. ChemTech Res., vol. 11, no. 05, pp. 265–280, 2018.
  9. M. Omidvar-Borna et al., “Batch and column studies for the adsorption of chromium(VI) on low-cost Hibiscus Cannabinus kenaf, a green adsorbent,” J. Taiwan Inst. Chem. Eng., vol. 68, pp. 80–89, 2016, doi: https://doi.org/10.1016/j.jtice.2016.09.022.
  10. M. C. Corral-Escárcega, M. G. Ruiz-Gutiérrez, A. Quintero-Ramos, C. O. Meléndez-Pizarro, D. Lardizabal-Gutiérrez, and K. Campos-Venegas, “Use of biomass-derived from pecan nut husks (Carya illinoinensis) for chromium removal from aqueous solutions. column modeling and adsorption kinetics studies,” Rev. Mex. Ing. Quim., vol. 16, no. 3, pp. 939–953, 2017.
  11. E. Ben Khalifa, B. Rzig, R. Chakroun, H. Nouagui, and B. Hamrouni, “Application of response surface methodology for chromium removal by adsorption on low-cost biosorbent,” Chemom. Intell. Lab. Syst., vol. 189, pp. 18–26, 2019, doi: https://doi.org/10.1016/j.chemolab.2019.03.014.
  12. N. K. Mondal, A. Samanta, S. Chakraborty, and W. A. Shaikh, “Enhanced chromium (VI) removal using banana peel dust: isotherms, kinetics and thermodynamics study,” Sustain. Water Resour. Manag., vol. 4, no. 3, pp. 489–497, 2017, doi: https://doi.org/10.1007/s40899-017-0130-7.
  13. M. Mahmood-Ul-Hassan, M. Yasin, M. Yousra, R. Ahmad, and S. Sarwar, “Kinetics, isotherms, and thermodynamic studies of lead, chromium, and cadmium bio-adsorption from aqueous solution onto Picea smithiana sawdust,” Environ. Sci. Pollut. Res., vol. 25, no. 13, pp. 12570–12578, 2018, doi: 10.1007/s11356-018-1300-3.
  14. Y. Yi, J. Lv, Y. Liu, and G. Wu, “Synthesis and application of modified Litchi peel for removal of hexavalent chromium from aqueous solutions,” J. Mol. Liq., vol. 225, pp. 28–33, 2017, doi: 10.1016/j.molliq.2016.10.140.
  15. R. Labied, O. Benturki, A. Y. Eddine Hamitouche, and A. Donnot, “Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): Kinetic, equilibrium, and thermodynamic study,” Adsorpt. Sci. Technol., vol. 36, no. 3–4, pp. 1066–1099, 2018, doi: 10.1177/0263617417750739.
  16. S. Mädler et al., “Trace-Level Analysis of Hexavalent Chromium in Lake Sediment Samples Using Ion Chromatography Tandem Mass Spectrometry,” J. Environ. Prot. (Irvine,. Calif)., vol. 7, no. February, pp. 422–434, 2016.
  17. S. H. Peng, R. Wang, L. Z. Yang, L. He, X. He, and X. Liu, “Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell,” Ecotoxicol. Environ. Saf., vol. 165, no. August, pp. 61–69, 2018, doi: 10.1016/j.ecoenv.2018.08.084.
  18. W. Cherdchoo, S. Nithettham, and J. Charoenpanich, “Removal of Cr(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea,” Chemosphere, vol. 221, pp. 758–767, Apr. 2019, doi: 10.1016/j.chemosphere.2019.01.100.
  19. N. Ayawei, A. N. Ebelegi, and D. Wankasi, “Modelling and Interpretation of Adsorption Isotherms,” J. Chem., vol. 2017, 2017, doi: 10.1155/2017/3039817.
  20. A.-H. M. Rasmey, A. A. Aboseidah, and A. K. Youssef, “Application of Langmuir and Freundlich Isotherm Models on Biosorption of Pb2+ by Freez-dried Biomass of Pseudomonas aeruginosa,” vol. 53, pp. 37–48, 2018, doi: 10.21608/ejm.2018.2998.1050.
  21. K. G. Akpomie, L. O. Eluke, V. I. E. Ajiwe, and C. O. Alisa, “Attenuation kinetics and desorption performance of artocarpus altilis seed husk for Co (II), Pb (II) And Zn (II) Ions,” Iran. J. Chem. Chem. Eng., vol. 37, no. 3, pp. 171–186, 2018.
  22. P. S. Blanes et al., “Application of soy hull biomass in removal of Cr(VI) from contaminated waters. Kinetic, thermodynamic and continuous sorption studies,” J. Environ. Chem. Eng., vol. 4, no. 1, pp. 516–526, 2016, doi: 10.1016/j.jece.2015.12.008.
  23. H. N. Tran, S. J. You, and H. P. Chao, “Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study,” J. Environ. Chem. Eng., vol. 4, no. 3, pp. 2671–2682, 2016, doi: 10.1016/j.jece.2016.05.009.
  24. P. Chakraborty, S. Show, W. Ur Rahman, and G. Halder, “Linearity and non-linearity analysis of isotherms and kinetics for ibuprofen remotion using superheated steam and acid modified biochar,” Process Saf. Environ. Prot., vol. 126, pp. 193–204, 2019, doi: 10.1016/j.psep.2019.04.011.
  25. Y. Wu, Y. Fan, M. Zhang, Z. Ming, S. Yang, and A. Arkin, “Functionalized agricultural biomass as a low-cost adsorbent : Utilization of rice straw incorporated with amine groups for the adsorption of Cr (VI) and Ni (II) from single and binary systems,” Biochem. Eng. J., vol. 105, pp. 27–35, 2016, doi: http://dx.doi.org/10.1016/j.bej.2015.08.017.
  26. H. Haroon et al., “Equilibrium kinetic and thermodynamic studies of Cr(VI) adsorption onto a novel adsorbent of Eucalyptus camaldulensis waste: Batch and column reactors,” Korean J. Chem. Eng., vol. 33, no. 10, pp. 2898–2907, 2016, doi: 10.1007/s11814-016-0160-0.
  27. J. Cai et al., “Review of physicochemical properties and analytical characterization of lignocellulosic biomass,” Renew. Sustain. Energy Rev., vol. 76, pp. 309–322, 2017, doi: 10.1016/j.rser.2017.03.072.
  28. A. Villabona-Ortíz, C. Tejada-Tovar, and R. Ortega-Toro, “Modelling of the adsorption kinetics of Chromium (VI) using waste biomaterials,” Rev. Mex. Ing. Química, vol. 19, no. Vi, pp. 401–408, 2020, doi: 10.24275/rmiq/IA650.
  29. E. Da’Na and A. Awad, “Regeneration of spent activated carbon obtained from home filtration system and applying it for heavy metals adsorption,” J. Environ. Chem. Eng., vol. 5, no. 4, pp. 3091–3099, 2017, doi: 10.1016/j.jece.2017.06.022.
  30. A. Ajmani, T. Shahnaz, S. Subbiah, and S. Narayanasamy, “Hexavalent chromium adsorption on virgin, biochar, and chemically modified carbons prepared from Phanera vahlii fruit biomass: equilibrium, kinetics, and thermodynamics approach,” Environ. Sci. Pollut. Res., vol. 26, no. 31, pp. 32137–32150, 2019, doi: 10.1007/s11356-019-06335-z.
  31. S. Pawar, T. Theodore, and P. G. Hiremath, “Synthesis of hydroxyapatite from avocado fruit peel and its application for hexavalent chromium removal from aqueous solutions - adsorption isotherms and kinetics study,” Rasayan J. Chem., vol. 12, no. 4, pp. 1964–1972, 2019, doi: 10.31788/RJC.2019.1245425.
  32. A. N. Amro, M. K. Abhary, M. M. Shaikh, and S. Ali, “Removal of lead and cadmium ions from aqueous solution by adsorption on a low-cost Phragmites biomass,” Processes, vol. 7, no. 7, p. 406, 2019, doi: 10.3390/pr7070406.

Downloads

Download data is not yet available.