A review of one-dimensional Zariski geometries
Abstract
In this article, we present a comprehensive review of Zariski geometries of dimension one.We begin with a brief retrospective of key concepts in model theory and its historical evolution. Subsequently, we introduce concepts in algebraic geometry, exploring their intersection with model theory to establish geometric model theory. We emphasize Zilber’s Trichotomy Conjecture and how Hrushovski’s refutation led Zilber and Hrushovski to isolate the class of structures where the conjecture holds, giving rise to Zariski geometries. We conclude by presenting the results obtained by Zilber and Hrushovski in the 90s and provide an updated bibliographic review of the topic.
References
- Hrushovski E. & Zilber B. (1996). Zariski Geometries, Journal of the American Mathematical Society, Vol. 9, No. 1. http://www.jstor.org/stable/2152839.
- Hrushovski E. & Zilber B. (1993). Zariski Geo- metries, Bulletin of the American Mathematical Society, Vol. 28, No. 2. https://doi.org/10.1090/ S0273-0979-1993-00380-X.
- Marker D. (1998). Zariski geometries. In: Bous- caren E. (eds). Model Theory and Algebraic Geo- metry. Lecture Notes in Mathematics, vol 1696. Sprin- ger, Berlin, Heidelberg, 1998. https://doi.org/10.1007/ 978-3-540-68521-07.
- Voevodsky, V. A. (1991) e ́tale topologies of schemes over fields of finite type over Q. Mathematics of the URSS-Izvestiya 37.3:511 pgs
- Zilber B. (2014). A curve and its abstract Jacobian, Int. Math. Res. Not. IMRN. 5. 1425–1439.
- F. A. Bogomolov, M. Korotaev & Yu. Tschinkel. (2010). A Torelli theorem for curves over finite fields, Pure Appl. Math. Q., 1, pp. 245-294. https://doi.org/ 10.4310/PAMQ.2010.v6.n1.a7.
- Kollar, Janos. et al. (2021) Topological reconstruction theorems for varieties. Preprint: arXiv:2003.04847v3
- Pillay, A. (1996). Review on Hrushovski Ehud and Zil- ber Boris. Zariski geometries, Journal of the American Mathematical Society, vol. 9, pp. 1-56. The Journal of Symbolic Logic, 64, pp 906-908 doi:10.2307/2586511.
- Hrushovski E. (1993). A new strongly minimal set in Annals of Pure and Applied Logic 62(2).:147-166. https://doi.org/10.1016/0168-0072(93).90171-9.
- Villaveces A. (2011) La Tricotom ́ıa de Zilber: una breve introduccio ́n geome ́trica. EVM.
- Pinzon S. Completaciones y especializacio- nes de geometr ́ıas de Zariski. (2016). MSc thesis, Departamento de Matemáticas, Universidad de los Andes, Bogota-Colombia. https://repositorio.uniandes.edu.co/bitstream/handle/ 1992/13959/u754351.pdf?sequence=1&isAllowed=y.
- Marker D. (2002). Model Theory: an introduction. Springer-Verlag GTM, New York. https://doi.org/10. 1007/b98860.
- Chang C. and Keisler H. (1973). Model Theory, Dover Books on Mathematics reprinting, 2013.
- Casanovas E. The recent History of Model Theory. (Universidad de Barcelona.) http://www.ub.edu/ modeltheory/documentos/HistoryMT.pdf.
- Marjca A. & Toffalori C. (2003). A guide to classical and Mordern Model Theory. Kluwer Acaemic Press. https://doi.org/10.1007/978-94-007-0812-9.
- Aschenbrenner M. https://www.math.ucla.edu/ ∼matthias/223m.1.09s/.
- Tent K. & Ziegler M. (2012). A Course in Model Theory. Lecture Notes in Logic, vol. 40. Cambridge University Press, United Kingdom.
- Goedel K. (1930). Die Vollsta ̈ndigkeit der Axiome des logischen Funktionenkalku ̈ls. Monatshefte fu ̈r Mathe- matik (in German). 37 (1): 349-360. doi:10.1007/ BF01696781.
- Loewenheim L. (1915). U ̈ber Moglichkeiten im Relativkalkuel. Math. Ann. 76, 447-470. https://doi.org/10. 1007/BF01458217.
- Koenig D.(1927).Ueber eine Schlussweise aus dem Endlichen ins unendliche , Acta Sci Math (Szeged) (In German) (3(2-3).).: 121-130.
- Skolem Th. (1920). Logisch-kombinatorische Unter- suchungen u ̈ber die Erfu ̈llbarkeit oder Beweisbar- keit mathematischer Sa ̈tze nebst einem Theoreme u ̈ber dichte Mengen, Videnskapsselskapet Skrifter, I. Matematisk-naturvidenskabelig Klasse, 4: 1-36.
- Maltsev A. (1936). Untersuchungen aus dem Gebiete der mathematischen Logik, Matematicheskii Sbornik, Novaya Seriya, 1(43). (3).: 323-336. http://mi.mathnet. ru/msb5392.
- Zilber B. (2010). Zariski Geometries: Geometry from the Logicians point of view. CUP. London Mathemati- cal Society.
- Vaught R. (1954). Applications to the Lo ̈wenheim- Skolem-Tarski theorem to problems of completeness and decidability, Indagationes Mathematicae, 16: 467- 472, MR 0063993.
- Los ́ Jerzy (1955). Quelques remarques, the ́ore`mes et proble`mes sur les classes de ́finissables d’alge`bres. In: Mathematical interpretation of formal systems, pp. 98- 113. North-Holland Publishing Co., Amsterdam.
- MorleyM.(1965).CategoricityinPower,Transactions of the American Mathematical Society, Vol. 114, No. 2, 114 (2).: 514-538. https://doi.org/10.2307/1994188.
- Shelah S. (1974). Categoricity of uncountable theories, Proceedings of the Tarski Symposium (Proc. Sympos. Pure Math., Vol. XXV, Univ. of California, Berkeley, Calif., 1971). Proceedings of Symposia in Pure Mathe- matics, 25, Providence, R.I.: American Mathematical Society, pp. 187-203.
- Hartshorne R. (2006). Algebraic Geometry, Springer Graduated Texts in Mathematics 52. https://doi.org/10. 1007/978-1-4757-3849-0.
- Grothendieck A. (1966). e ́le ́ments de ge ́ome ́trie alge ́brique. IV. e ́tude locale des sche ́mas et des morphismes de sche ́mas. III., Inst. Hautes e ́tudes Sci. Publ. Math., 28. http://www.numdam.org/item/ PMIHES 1966 28 5 0/.
- Ax J. (1968). The elementary theory of finite fields, Annals of Mathematics, Second Series, 88 (2).: 239- 271, doi:10.2307/1970573, JSTOR 1970573.
- Hilbert D. (1893). über die vollen Invariantensysteme. Math. Ann. 42, pp. 313-373. https://doi.org/10.1007/BF01444162.
- Robinson A. (1963). Introduction to model theory and the metamathematics of algebra, North-Holland, Amsterdam. MR 26:4911.
- Abramovich D. & Voloch F. (1992). Towards a proof of the Mordell-Lang conjecture in characteristic p, Int. Math. Res. Not. 2, 103-115. https://doi.org/10.1155/ S1073792892000126.
- Hrushovski E. (1996). The Mordell-Lang conjecture for function fields, JAMS 9, 667-690. https://doi.org/ 10.1090/S0894-0347-96-00202-0.
- Bouscaren E. (1998). Proof of the Mordell-Lang con- jecture for function fields. In: Bouscaren E. (eds). Mo- del Theory and Algebraic Geometry. Lecture Notes in Mathematics, vol 1696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68521-0 10.
- Abdolahzadi R. & Zilber B. (2020). Definability, in- terpretations and e ́tale fundamental groups. arXiv: 1906.05052[math.LO].
- Pillay A. (1983). An Introduction to Stability Theory. Dover Books on Mathematics reprinting 2008.
- Baldwin, J. T. & A. H. Lachlan. (1971). On Strongly Minimal Sets. The Journal of Symbolic Logic, vol. 36, no. 1, pp. 79-96. https://doi.org/10.2307/2271517.
- Zilber B. (1984). The structure of models of uncoun- tably categorical theories, Proc. Internat. Congr. Math. (Warsaw, 1983). vol. 1, North-Holland, Amsterdam, pp. 359-368.
- AlbalahiA.(2019).ZariskiGeometriesonStronglyMi- nimal Unars. PhD thesis at University of East Anglia. https://ueaeprints.uea.ac.uk/id/eprint/72730.
- ZilberB.(1993).Modeltheoryandalgebraicgeometry, In: Proc. 10th Easter Conference on Model Theory (wendisch Rietz, 1993). Seminarberichte 93, Humboldt Univ, Berlin, 93-117.
- Smith L. (2008). Toric Varieties as Analytic Zariski Structures, PhD Thesis, University of Oxford.
- Gavrilovich, M. (2012). Covers of Abelian varieties as analytic Zariski structures. Annals of Pure and Applied Logic, 163(11), 1524-1548.
- KangasK.(2018).FindinggroupsinZariski-likestruc- tures. PhD thesis at Departament of Mathematics and Statistics at University f Helsinki. arXiv:1404.6811v1.
- Kangas K. (2017). Finding a field in a Zariski-like structure. arXiv:1502.03225v3[math.LO].[42] Smith L. (2008). Toric Varieties as Analytic Zariski Structures, PhD Thesis, University of Oxford.
- Solanki SolankiV.(2011).Zariski Structures in Non-commutative Algebraic Geometry and Representation Theory. PhD Thesis, University of Oxford. V. (2011). Zariski Structures in Non-commutative Algebraic Geo- metry and Representation Theory. PhD Thesis, University of Oxford.
- Lang S. (1955). Introduction to Algebraic Geometry. Dover Books on Mathematics reprinting, 2019.
- Weil A. (1946). Foundations of Algebraic Geometry. American Mathematical Society Colloquium Publica- tions, 29, Providence, R.I.: American Mathematical Society, MR 0023093.
- Onshuus A. & Zilber B. (2011). The first order theory of the universal specializations, available at http://www.logique.jussieu.fr/modnet/Publications/ Preprint%20server/papers/355/355.pdf.
- Efem U. (2013). Specializations and Algebraically clo- sed fields. arXiv:1304.3699v2[math.LO].
- Efem Ucializations. (2017). The Theory of Spe- PhD thesis, University of https://ora.ox.ac.uk/objects/uuid:
- Oxford. 3c14ca5d-c3d7-4233-93d3-81a4e20c4d1f.
- Efem, U., and Zilber, B. (2023). On the Theory of Specialisations of Regular Covers of Zariski Structures. arXiv preprint arXiv:2302.08542.
- Sustretov D. (2012). Non-algebraic Zariski geometries, PhD Thesis, University of Oxford.
- Zilber B. (2008). A class of quantum Zariski geome- tries. In Z. Chatzidakis, H. Macpherson, A. Pillay, and A. Wilkie, editors, Model Theory with applications to algebra and analysis, I and II. Cambridge University Press.
- RuizC. Zariski geometries and commutative Algebraic geometry. Manuscript.
- Zanussi, M. (2021). Zariski Geometries and Quantum Mechanics. PhD thesis. Boise State University.
- Torres J. (2020) Understanding Zariski geometries. MSc Thesis. Universidad de Antioquia. Colombia.
Downloads
Download data is not yet available.