Skip to main navigation menu Skip to main content Skip to site footer

Siderophores of Rhizobacteria and Their Application in Bioremediation

Abstract

Soil contamination by toxic metals reduces agricultural production and food quality. Bioremediation is an alternative for the recovery of contaminated soils, mediated by microorganisms that have different mechanisms, such as the production of siderophores, to counteract the toxicity of heavy metals. Siderophores are small organic molecules that chelate iron, which is an essential element for the life of all organisms and is required in different cellular processes. Knowledge about the synthesis mechanisms of siderophores and their potential effect on bioremediation is fundamental for the implementation of ecological alternatives to reduce the adverse effects caused by the use of chemicals. This review describes the classes, synthesis, transport and regulation of siderophores; it also presents the main findings related to the use of plant growth promoting rhizobacteria (PGPR) producers of siderophores in the bioremediation of contaminated environments, in order to consolidate information for the development of new sustainable alternatives to reduce the negative impact of toxic metals in agricultural production.

Keywords

Español


References

  1. A. Velasco-Jiménez, O. Castellanos-Hernández, G. Acevedo-Hernández, R. C. Aarland, & A. Rodríguez-Sahagún. “Bacterias rizosféricas con beneficios potenciales en la agricultura”. Terra Latinoamericana, 38(2), pp. 333-345. 2020. https://doi.org/10.28940/terra.v38i2.470
  2. A. Pahari, A. Pradhan, S. K. Nayak, & B. B. Mishra. “Bacterial siderophore as a plant growth promoter”. Microbial Biotechnology: Volume 1. Applications in Agriculture and Environment, pp. 163-180. 2017. https://doi.org/10.1007/978-981-10-6847-8_7
  3. A. Glaros, S. Marquis, C. Major, P. Quarshie, L. Ashton, A. G. Green, K. B. Kc, L. Newman, R. Newell, R. Y. Yada, & E. D. Fraser. “Horizon scanning and review of the impact of five food and food production models for the global food system in 2050”. Trends in Food Science & Technology, 119, pp. 550-564. 2022. https://doi.org/10.1016/j.tifs.2021.11.013
  4. N. H. Bahar, M. Lo, M. Sanjaya, J. Van Vianen, P. Alexander, A. Ickowitz, & T. Sunderland. “Meeting the food security challenge for nine billion people in 2050: What impact on forests”. Glob. Environ. Chang, 62, pp. 102056. 2020. https://10.1016/j.gloenvcha.2020.102056
  5. FAO. “The future of food and agriculture – Alternative pathways to 2050”. Rome. 224. 2018. http://www.fao.org/3/I8429EN/i8429en.pdf
  6. E. Craswell. “Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem”. SN Applied Sciences, 3(4), pp. 518. (2021). https://doi.org/10.1007/s42452-021-04521-8
  7. K. K. Yadav, & S. Sarkar. “Biofertilizers, impact on soil fertility and crop productivity under sustainable agriculture”. Environment and Ecology, 37(1), pp. 89-93. 2019.
  8. H. N. Pahalvi, L. Rafiya, S. Rashid, B. Nisar, & A. N. Kamili. “Chemical fertilizers and their impact on soil health”. Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs, pp. 1-20. 2021. https://doi.org/10.1007/978-3-030-61010-4_1
  9. J. Pretty, T. G. Benton, Z. P. Bharucha, L. V. Dicks, C. B. Flora, H. C. J. Godfray, D. Goulson, S. Hartley, N. Lampkin, C. Morris, G. Pierzynski, P. V. V. Prasad, J. Reganold, J. Rockström, P. Smith, P. Thorne, & S. Wratten. “Global assessment of agricultural system redesign for sustainable intensification”. Nature Sustainability, 1(8), pp. 441-446. 2018. https://doi.org/10.1038/s41893-018-0114-0
  10. M. Saha, S. Sarkar, B. Sarkar, B. K. Sharma, S. Bhattacharjee, & P. Tribedi. “Microbial siderophores and their potential applications: a review”. Environmental Science and Pollution Research, 23, pp. 3984-3999. 2016. https://doi.org/10.1007/s11356-015-4294-0
  11. A. Kataria, & R. Dudwal. “Biofertilizer: A Paradigm Shift to Sustainability”. Advances in Sustainable Agriculture, pp. 178-185. 2022.
  12. N. S. Salleh, N. A. M. Lazim, & I. I. Muhamad. “Biofertilizer in promoting sustainable agriculture for food safety and security: A review”. PERINTIS eJournal, 11(2), pp. 117-129. 2021.
  13. H. Chandran, M. Meena, & P. Swapnil. “Plant growth-promoting rhizobacteria as a green alternative for sustainable agriculture”. Sustainability, 13(19), pp. 10986. 2021. https://doi.org/10.3390/su131910986
  14. A. Shah, M. Nazari, M. Antar, L. A. Msimbira, J. Naamala, D. Lyu, M. Rabileh, J. Zajonc, & D. L. Smith. “PGPR in agriculture: A sustainable approach to increasing climate change resilience”. Frontiers in Sustainable Food Systems, 5, pp. 667546. 2021. https://doi.org/10.3389/fsufs.2021.667546
  15. A. Sumbul, R. A. Ansari, R. Rizvi, & I. Mahmood. “Azotobacter: A potential bio- fertilizer for soil and plant health management”. Saudi journal of biological sciences, 27(12), pp: 3634-3640. 2020. https://doi.org/10.1016/j.sjbs.2020.08.004
  16. B. K. Kashyap, M. K. Solanki, A. K. Pandey, S. Prabha, P. Kumar, & B. Kumari. “Bacillus as plant growth promoting rhizobacteria (PGPR): a promising green agriculture technology”. Plant Health Under Biotic Stress: Volume 2: Microbial Interactions, pp. 219-236. 2019. https://doi.org/10.1007/978-981-13-6040-4_11
  17. P. Mohanty, P. K. Singh, D. Chakraborty, S. Mishra, & R. Pattnaik. “Insight into the role of PGPR in sustainable agriculture and environment”. Frontiers in Sustainable Food Systems, 5, pp. 667150. 2021. https://doi.org/10.3389/fsufs.2021.667150
  18. M. Sheng, H. Jia, G. Zhang, L. Zeng, T. Zhang, Y. Long, J. Lan, Z. Q. Hu, Z. Zeng, B. Wang, & H. Liu. “Siderophore production by rhizosphere biological control bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and its antifungal effects on Candida albicans”. Journal of Microbiology and Biotechnology, 30(5), pp. 689. 2020. https://doi.org/10.4014/jmb.1910.10066
  19. S. Harish, S. Parthasarathy, D. Durgadevi, K. Anandhi, & T. Raguchander. “Plant growth-promoting rhizobacteria: harnessing its potential for sustainable plant disease management”. Plant Growth Promoting Rhizobacteria for Agricultural Sustainability: From Theory to Practices, 151-187. 2019. https://doi.org/10.1007/978-981-13-7553-8_8
  20. M. Verma, J. Mishra, & N. K. Arora. “Plant growth-promoting rhizobacteria: diversity and applications. Environmental biotechnology: for sustainable future, pp. 129-173. 2019. https://doi.org/10.1007/978-981-10-7284-0_6
  21. B. Khasheii, P. Mahmoodi, & A. Mohammadzadeh. “Siderophores: Importance in bacterial pathogenesis and applications in medicine and industry”. Microbiological Research, 250, pp. 126790. 2021. https://doi.org/10.1016/j.micres.2021.126790
  22. Y. Seyoum, K. Baye, & C. Humblot. “Iron homeostasis in host and gut bacteria–a complex interrelationship”. Gut Microbes, 13(1), pp. 1874855. 2021. https://doi.org/10.1080/19490976.2021.1874855
  23. K. Vijay, M. Shibasini, P. Sivasakthivelan, & T. Kavitha. “Microbial siderophores as molecular shuttles for metal cations: sources, sinks and application perspectives”. Archives of Microbiology, 205(9), pp. 322. 2023. https://doi.org/10.1007/s00203-023-03644-3
  24. S. C. Andrews, A. K. Robinson, & F. Rodríguez-Quiñones. “Bacterial iron homeostasis.” FEMS microbiology reviews, 27 (2-3), pp. 215-237. 2003. https://doi.org/10.1016/S0168-6445(03)00055-X
  25. V. Braun, & K. Hantke. “Recent insights into iron import by bacteria.” Current opinion in chemical biology, 15 (2), pp. 328-334. 2011. https://doi.org/10.1016/j.cbpa.2011.01.005
  26. . M. Albelda-Berenguer, M. Monachon, & E. Joseph. “Siderophores: From natural roles to potential applications”. Advances in applied microbiology, 106, pp. 193-225. 2019. https://doi.org/10.1016/bs.aambs.2018.12.001
  27. M. Hofmann, G. Retamal-Morales, & D. Tischler, D. “Metal binding ability of microbial natural metal chelators and potential applications”. Natural Product Reports, 37(9), pp. 1262- 1283. 2020. https://doi.org/10.1039/C9NP00058E
  28. M. Sandy, & A. Butler. “Microbial iron acquisition: marine and terrestrial siderophores”. Chemical reviews, 109(10), pp. 4580-4595. 2009. https://doi.org/10.1021/cr9002787
  29. J. S. Brown, & D. W. Holden. “Iron acquisition by Gram-positive bacterial pathogens”. Microbes and infection, 4(11), pp. 1149-1156. 2002. https://doi.org/10.1016/S1286-4579(02)01640-4
  30. S. Sudewi, B. Patandjengi, A. Ala, M. F. BDR, A. R. Saleh, & R. Ratnawati. “Siderophore production of the rhizobacteria isolated from local “Kamba” rice plants, Poso Regency in Central Sulawesi”. Agric, 34(2), pp. 225-238. 2022. https://doi.org/10.24246/agric.2022.v34.i2.p225-238
  31. Y. Zhang, J. Ren, W. Wang, B. Chen, E. Li, & S. Chen. “Siderophore and indolic acid production by Paenibacillus triticisoli BJ-18 and their plant growth-promoting and antimicrobe abilities”. PeerJ, 8, pp. e9403. 2020. https://doi.org/10.6084/m9.figshare.11996661.v1
  32. M. G. Page. “The role of iron and siderophores in infection, and the development of siderophore antibiotics.” Clinical Infectious Diseases, 69 (7), pp. S529-S537. 2019. https://doi.org/10.1093/cid/ciz825
  33. S. S. Ali, & N.N. Vidhale. “Bacterial siderophore and their application: a review”. Int J Curr Microbiol App Sci, 2(12), pp. 03-312. 2013.
  34. F. Galvis, L. Ageitos, J. Rodríguez, C. Jiménez, J. L. Barja, M. L. Lemos, & M. Balado. “Vibrio neptunius produces piscibactin and amphibactin and both siderophores contribute significantly to virulence for clams”. Frontiers in Cellular and Infection Microbiology, 1049. 2021. https://doi.org/10.3389/fcimb.2021.750567
  35. F. Galvis, L. Ageitos, D. Martínez‐Matamoros, J. L. Barja, J. Rodríguez, M. L. Lemos, C. Jiménez, & M. Balado. “The marine bivalve molluscs pathogen Vibrio neptunius produces the siderophore amphibactin, which is widespread in molluscs microbiota”. Environmental Microbiology, 22(12), pp. 5467-5482. 2020. https://doi.org/10.1111/1462-2920.15312
  36. M. L. Lemos, & M. Balado. “Iron uptake mechanisms as key virulence factors in bacterial fish pathogens.” Journal of applied microbiology, 129 (1), pp. 104-115. 2020. https://doi.org/10.1111/jam.14595
  37. M. A. Lages, M. Balado, & M. L. Lemos. “The expression of virulence factors in Vibrio anguillarum is dually regulated by iron levels and temperature.” Frontiers in microbiology, 10, pp. 2335. 2019. https://doi.org/10.3389/fmicb.2019.02335
  38. R. J. Kustusch, C. J. Kuehl, & J. H. Crosa. “The ttpC gene is contained in two of three TonB systems in the human pathogen Vibrio vulnificus, but only one is active in iron transport and virulence.” Journal of bacteriology, 194 (12), pp. 3250-3259. 2012. https://doi.org/10.1128/jb.00155-12
  39. A. Nielsen, M. Mansson, M. Wietz, A. N. Varming, R. K. Phipps, T. O. Larsen, L. Gram, & H. Ingmer. “Nigribactin, a novel siderophore from Vibrio nigripulchritudo, modulates Staphylococcus aureus virulence gene expression.” Marine drugs, 10 (11), pp. 2584-2595. 2012. https://doi.org/10.3390/md10112584
  40. R. Z. Sayyed, S. B. Chincholkar, M. S. Reddy, N. S. Gangurde, & P. R. Patel. Siderophore producing PGPR for crop nutrition and phytopathogen suppression. Bacteria in agrobiology: disease management, pp. 449-471. 2013. https://doi.org/10.1007/978-3-642-33639-3_17
  41. P. Cornelis, Q. Wei, S. C. Andrews, & T. Vinckx. “Iron homeostasis and management of oxidative stress response in bacteria.” Metallomics, 3 (6), pp. 540–49. 2011. https://doi.org/10.1039/c1mt00022e
  42. A. M. L. Kraepiel, J. P. Bellenger, T. Wichard, & F. M. Morel. “Multiple roles of siderophores in free-living nitrogen-fixing bacteria”. Biometals, 22, pp. 573-581. 2009. https://doi.org/10.1007/s10534-009-9222-7
  43. S. Donnini, A. Castagna, A. Ranieri, & G. Zocchi. “Differential responses in pear and quince genotypes induced by Fe deficiency and bicarbonate”. Journal of plant physiology, 166(11), pp. 1181-1193. 2009. https://doi.org/10.1016/j.jplph.2009.01.007
  44. D. G. Mendoza-Cózatl, A. Gokul, M. F. Carelse, T. O. Jobe, T. A. Long, & M. Keyster. “Keep talking: crosstalk between iron and sulfur networks fine-tunes growth and development to promote survival under iron limitation”. Journal of Experimental Botany, 70(16), pp. 4197-4210. 2019. https://doi.org/10.1093/jxb/erz290
  45. A. M. Timofeeva, M. R. Galyamova, & S. E. Sedykh. “Bacterial siderophores: Classification, biosynthesis, perspectives of use in agriculture”. Plants, 11(22), pp. 3065. 2022. https://doi.org/10.3390/plants11223065
  46. C. M. Ferreira, H. M. Soares, & E. V. Soares. “Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects”. Science of the total environment, 682, pp. 779-799. https://doi.org/10.1016/j.scitotenv.2019.04.225
  47. H. Zhang, Y. Sun, X. Xie, M. S. Kim, S. E. Dowd, & P. W. Paré. “A soil bacterium regulates plant acquisition of iron via deficiency‐inducible mechanisms”. The Plant Journal, 58(4), pp. 568-577. 2009. https://doi.org/10.1111/j.1365-313X.2009.03803.x
  48. D. E. Crowley, Y. C. Wang, C. P. P. Reid, & P. J. Szaniszlo. “Mechanisms of iron acquisition from siderophores by microorganisms and plants. In Iron Nutrition and Interactions in Plants: Proceedings of the Fifth International Symposium on Iron Nutrition and Interactions in Plants”. Springer Dordrecht., 43, 213–232. 1991. https://doi.org/10.1007/978-94-011-3294-7_27
  49. J. B. Neilands. “A crystalline organo-iron pigment from a rust fungus (Ustilago sphaerogena)”. Journal of the American Chemical Society, 74(19), pp. 4846-4847. 1952. https://doi.org/10.1021/ja01139a033
  50. J. Francis, H. M. Macturk, J. Madinaveitia, & G. A. Snow. “Mycobactin, a growth factor for Mycobacterium johnei. 1. Isolation from Mycobacterium phlei.” Biochemical Journal, 55 (4), pp. 596. 1953. PMCID: PMC1269366
  51. G. Garg, S. Kumar, & S. Bhati. “Siderophore in plant nutritional management: role of endophytic bacteria”. Endophytes: Mineral Nutrient Management, Volume 3, pp. 315-329. 2021. https://doi.org/10.1007/978-3-030-65447-4_14
  52. S. Kügler, R. E. Cooper, J. Boessneck, K. Küsel, & T. Wichard. “Rhizobactin B is the preferred siderophore by a novel Pseudomonas isolate to obtain iron from dissolved organic matter in peatlands”. Biometals, 33, pp. 415-433. 2020. https://doi.org/10.1007/s10534-020-00258-w
  53. V. I. Holden, & M. A. Bachman. “Diverging roles of bacterial siderophores during infection.” Metallomics, 7 (6), 986-995. 2015. https://doi.org/10.1039/c4mt00333k
  54. J. Kramer, Ö. Özkaya, & R. Kümmerli. “Bacterial siderophores in community and host interactions”. Nature Reviews Microbiology, 18(3), pp. 152-163. 2020. https://doi.org/10.1038/s41579-019-0284-4
  55. E. Ahmed, & S. J. Holmström. “Siderophores in environmental research: roles and applications”. Microbial biotechnology, 7(3), pp: 196-208. 2014. https://doi.org/10.1111/1751-7915.12117
  56. R. Saha, N. Saha, R. S. Donofrio, & L. L. Bestervelt. “Microbial siderophores: a mini review”. Journal of basic microbiology, 53(4), pp. 303-317. 2013. https://doi.org/10.1002/jobm.201100552
  57. M. L. Lemos, M. Balado, & C. R. Osorio. “Anguibactin‐versus vanchrobactin‐ mediated iron uptake in Vibrio anguillarum: evolution and ecology of a fish pathogen”. Environmental microbiology reports, 2(1), pp. 19-26. 2010. https://doi.org/10.1111/j.1758-2229.2009.00103.x
  58. B. M. Hopkinson, & F. M. Morel. “The role of siderophores in iron acquisition by photosynthetic marine microorganisms.” Biometals, 22 (4), pp. 659-669. 2009. https://doi.org/10.1007/s10534-009-9235-2
  59. R. Finking, & M. A. Marahiel. “Biosynthesis of nonribosomal peptides.” Annual Review of Microbiology, 58, pp. 453-488. 2004. https://doi.org/10.1146/annurev.micro.58.030603.123615
  60. Z. L. Reitz, M. Sandy, & A. Butler. “Biosynthetic considerations of triscatechol siderophores framed on serine and threonine macrolactone scaffolds”. Metallomics, 9(7), 824-839. 2017. https://doi.org/10.1039/c7mt00111h
  61. S. M. Payne, A. R. Mey, & E. E. Wyckoff. “Vibrio iron transport: evolutionary adaptation to life in multiple environments.” Microbiology and Molecular Biology Reviews, 80 (1), pp. 69-90. 2016. https://doi.org/10.1128/mmbr.00046-15
  62. S. Sah, & R. Singh. “Siderophore: Structural and functional characterisation-A comprehensive review”. Agriculture, 61(3), pp. 97. 2015. https://doi.org/10.1515/agri-2015-0015
  63. B. F. Matzanke. "Iron transport: siderophores." Encyclopedia of Inorganic and Bioinorganic Chemistry, pp. 1-27. 2011. https://doi.org/10.1002/0470862106.ia117
  64. H. Boukhalfa, & A. L. Crumbliss. Chemical aspects of siderophore mediated iron transport. 2002. Biometals, 15, pp. 325-339. 2002. https://doi.org/10.1023/A:1020218608266
  65. J. W. Lee, & J. D. Helmann. “Functional specialization within the Fur family of metalloregulators.” Biometals, 20 (3-4), pp. 485. 2007. https://doi.org/10.1007/s10534-006-9070-7
  66. J. P. McHugh, F. Rodríguez-Quiñones, H. Abdul-Tehrani, D. A. Svistunenko, R. K. Poole, C. E. Cooper, & S. C. Andrews. “Global iron-dependent gene regulation in Escherichia coli: a new mechanism for iron homeostasis.” Journal of Biological Chemistry, 278 (32), pp. 29478- 29486. 2003. https://doi.org/10.1074/jbc.M303381200
  67. T. A. Hunt, W. T. Peng, I. Loubens, & D. G. Storey. “The Pseudomonas aeruginosa alternative sigma factor PvdS controls exotoxin A expression and is expressed in lung infections associated with cystic fibrosis.” Microbiology, 148 (10), pp. 3183-3193. 2002. https://doi.org/10.1099/00221287-148-10-3183
  68. G. J. D. Faraldo, & M. S. Sansom. “Acquisition of siderophores in gram-negative bacteria.” Nature reviews Molecular cell biology, 4 (2), pp. 105-116. 2003. https://doi.org/10.1038/nrm1015
  69. E. F. de Jonge, & J. Tommassen. “Conditional growth defect of Bordetella pertussis and Bordetella bronchiseptica ferric uptake regulator (fur) mutants”. FEMS Microbiology Letters, 369(1), 369(1), pp. 1-7. 2022. https://doi.org/10.1093/femsle/fnac047
  70. Y. Zhang, J. Gao, L. Wang, S. Liu, Z. Bai, X. Zhuang, & G. Zhuang. “Environmental adaptability and quorum sensing: iron uptake regulation during biofilm formation by Paracoccus denitrificans.” Applied and environmental microbiology, 84 (14), pp: 1-15. 2018. https://doi.org/10.1128/AEM.00865-18
  71. K. H. Vardhan, P. S. Kumar, & R. C. Panda. “A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives”. Journal of Molecular Liquids, 290, pp. 111197. 2019. https://doi.org/10.1016/j.molliq.2019.111197
  72. S. O'Brien, & A. Buckling. “The sociality of bioremediation: hijacking the social lives of microbial populations to clean up heavy metal contamination”. EMBO reports, 16(10), pp: 1241-1245. 2015. https://doi.org/10.15252/embr.201541064
  73. A. Boretti, & L. Rosa. “Reassessing the projections of the world water development report”. NPJ Clean Water, 2(1), pp. 15. 2019. https://doi.org/10.1038/s41545-019-0039-9
  74. R. Krishnamoorthy, V. Venkateswaran, M. Senthilkumar, R. Anandham, G. Selvakumar, K. Kim, Y. Kang & T. Sa. “Potential microbiological approaches for the remediation of heavy metal-contaminated soils”. Plant-Microbe Interactions in Agro-Ecological Perspectives: Volume 2: Microbial Interactions and Agro-Ecological Impacts, pp. 341-366. 2017. https://doi.org/10.1007/978-981-10-6593-4_14
  75. P. Alvarenga, C. Mourinha, M. Farto, T. Santos, P. Palma, J. Sengo, M. Morais, & C. Cunha-Queda. “Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors”. Waste management, 40, pp. 44-52. 2015. https://doi.org/10.1016/j.wasman.2015.01.027
  76. S. A. Asad, M. Farooq, A. Afzal, & H. West. “Integrated phytobial heavy metal remediation strategies for a sustainable clean environment-a review”. Chemosphere, 217, pp. 925-941. 2019. https://doi.org/10.1016/j.chemosphere.2018.11.021
  77. S. Pandey, P. K. Ghosh, S. Ghosh, T. K. De, & T. K. Maiti. “Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities”. Journal of Microbiology, 51, pp. 11-17. 2013. https://doi.org/10.1007/s12275-013-2330-7
  78. C. Zhang, S. Nie, J. Liang, G. Zeng, H. Wu, S. Hua, J. Liu, Y. Yuan, H. Xiao, L. Deng, & H. Xiang. “Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure”. Science of the Total Environment, 557, pp. 785-790. 2016. https://doi.org/10.1016/j.scitotenv.2016.01.170
  79. J. Liu, L. Zhao, Q. Liu, J. Li, Z. Qiao, P. Sun, & Y. Yang. “A critical review on soil washing during soil remediation for heavy metals and organic pollutants”. International Journal of Environmental Science and Technology, pp: 1-24. 2021. https://doi.org/10.1007/s13762-021-03144-1
  80. M. Shrivastava, A. Khandelwal, & S. Srivastava. “Heavy metal hyperaccumulator plants: the resource to understand the extreme adaptations of plants towards heavy metals”. Plant-metal interactions, pp. 79-97. 2019. https://doi.org/10.1007/978-3-030-20732-8_5
  81. A. P. Cordero, D. E. M. Vergara, & Y. A. Mendoza. “Siderophore production by Burkholderia cepacea at different cadmium concentrations”. Journal of Positive School Psychology, 7(2), pp. 1383-1389. 2023.
  82. M. Wróbel, W. Śliwakowski, P. Kowalczyk, K. Kramkowski, & J. Dobrzyński. “Bioremediation of heavy metals by the genus Bacillus”. International Journal of Environmental Research and Public Health, 20(6), pp. 4964. 2023. https://doi.org/10.3390/ijerph20064964
  83. A. Lenart-Boro, & P. Boro. “The Effect of industrial heavy metal pollution on microbial abundance and diversity in soils. A Review”. InTech., pp. 769-770. 2014. https://doi.org/10.5772/57406
  84. E. Hesse, S. O'Brien, N. Tromas, F. Bayer, A. M. Lujan, E. M. van Veen, D. Hodgson, & A. Buckling. “Ecological selection of siderophore‐producing microbial taxa in response to heavy metal contamination”. Ecology letters, 21(1), pp. 117-127. 2018. https://doi.org/10.1111/ele.12878
  85. P. Singh, P. K. Chauhan, S. K. Upadhyay, R. K. Singh, P. Dwivedi, J. Wang, D. Jain, & M. Jiang. “Mechanistic insights and potential use of siderophores producing microbes in rhizosphere for mitigation of stress in plants grown in degraded land”. Frontiers in Microbiology, 13, pp. 898979. 2022. https://doi.org/10.3389/fmicb.2022.898979
  86. S. R. David, & V. A. Geoffroy. “A review of asbestos bioweathering by siderophore-producing Pseudomonas: A potential strategy of bioremediation”. Microorganisms, 8(12), pp. 1870. 2020. https://doi.org/10.3390/microorganisms8121870
  87. T. Řezanka, A. Palyzová, H. Faltýsková, & K. Sigler. “Siderophores: amazing metabolites of microorganisms”. Studies in natural products chemistry, 60, pp. 157-188. 2019. https://doi.org/10.1016/B978-0-444-64181-6.00005-X
  88. S. G. Mahajan, V. S. Nandre, K. M. Kodam, & M. V. Kulkarni. “Desferrioxamine E produced by an indigenous salt tolerant Pseudomonas stutzeri stimulates iron uptake of Triticum aestivum L”. Biocatalysis and Agricultural Biotechnology, 35, pp. 102057. 2021. https://doi.org/10.1016/j.bcab.2021.102057
  89. C. O. Dimkpa, D. Merten, A. Svatoš, G. Büchel, & E. Kothe. “Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively”. Journal of Applied Microbiology, 107(5), pp. 1687-1696. 2009. https://doi.org/10.1111/j.1365-2672.2009.04355.x
  90. C. M. Ferreira, A. Vilas-Boas, C. A. Sousa, H. M. Soares, & E. V. Soares. “Comparison of five bacterial strains producing siderophores with ability to chelate iron under alkaline conditions”. AMB Express, 9(1), pp. 78. 2019. https://doi.org/10.1186/s13568-019-0796-3
  91. O. Baars, X. Zhang, F. M. Morel, & M. Y. Seyedsayamdost. “The siderophore metabolome of Azotobacter vinelandii”. Applied and environmental microbiology, 82(1), pp. 27-39. 2016. https://doi.org/10.1128/AEM.03160-15
  92. S. Santos, I. F. Neto, M. D. Machado, H. M. Soares, & E. V. Soares. “Siderophore production by Bacillus megaterium: effect of growth phase and cultural conditions”. Applied biochemistry and biotechnology, 172, pp. 549-560. 2014. https://doi.org/10.1007/s12010-013-0562-y
  93. R. Armin, S. Zühlke, G. Grunewaldt-Stöcker, F. Mahnkopp-Dirks, & S. Kusari. “Production of siderophores by an apple root-associated Streptomyces ciscaucasicus strain GS2 using chemical and biological OSMAC approaches”. Molecules, 26(12), pp. 3517. 2021. https://doi.org/10.3390/molecules26123517
  94. J. Y. Cornu, D. Huguenot, K. Jézéquel, M. Lollier, & T. Lebeau. “Bioremediation of copper-contaminated soils by bacteria”. World Journal of Microbiology and Biotechnology, 33, pp. 1-9. 2017. https://doi.org/10.1007/s11274-016-2191-4
  95. M. Złoch, D. Thiem, R. Gadzała-Kopciuch, & K. Hrynkiewicz. “Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd2+”. Chemosphere, 156, pp. 312-325. 2016. https://doi.org/10.1016/j.chemosphere.2016.04.130
  96. U. Neubauer, B. Nowack, G. Furrer, & R. Schulin. “Heavy metal sorption on clay minerals affected by the siderophore desferrioxamine B”. Environmental Science & Technology, 34(13), pp. 2749-2755. 2000. https://doi.org/10.1021/es990495w
  97. Neilands, J. B., & S. A. Leong. “Siderophores in relation to plant growth and disease”. Annual Review of Plant Physiology, 37(1), pp. 187-208. 1986. https://doi.org/10.1146/annurev.pp.37.060186.001155
  98. A. Khan, P. Singh, & A. Srivastava. “Synthesis, nature and utility of universal iron chelator–Siderophore: A review”. Microbiological research, 212, pp. 103-111. 2018. https://doi.org/10.1016/j.micres.2017.10.012
  99. M. A. Wyatt, C. W. Johnston, & N. A. Magarvey. “Gold nanoparticle formation via microbial metallophore chemistries”. Journal of nanoparticle research, 16, pp. 1-7. 2014. https://doi.org/10.1007/s11051-013-2212-2
  100. X. Zhang, O. Baars, & F. M. Morel. “Genetic, structural, and functional diversity of low and high-affinity siderophores in strains of nitrogen fixing Azotobacter chroococcum”. Metallomics, 11(1), pp. 201-212. 2019. https://doi.org/10.1039/c8mt00236c
  101. T. Wichard, J. P. Bellenger, F. M. Morel, & A. M. Kraepiel. “Role of the siderophore azotobactin in the bacterial acquisition of nitrogenase metal cofactors”. Environmental science & technology, 43(19), pp. 7218-7224. 2009. https://doi.org/10.1021/es8037214
  102. X. Sun, H. Feng, J. Luo, L. Lin, H. Zhang, Y. Duan, F. Liu, K. Zhang, B. Wang, D. Li, Y. Hu, & Z. Zhu. “A novel N- arachidonoyl-l-alanine-catabolizing strain of Serratia marcescens for the bioremediation of Cd and Cr co-contamination”. Environmental Research, 222, pp. 115376. 2023. https://doi.org/10.1016/j.envres.2023.115376
  103. J. Huang, Z. Liu, S. Li, B. Xu, Y. Gong, Y. Yang, & H. Sun. “Isolation and engineering of plant growth promoting rhizobacteria Pseudomonas aeruginosa for enhanced cadmium bioremediation”. The Journal of General and Applied Microbiology, 62(5), pp. 258-265. 2016. https://doi.org/10.2323/jgam.2016.04.007
  104. A. Kumar, M. Maleva, L. B. Bruno, & M. Rajkumar. “Synergistic effect of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing Bacillus aerophilus TR15c for enhanced growth and copper accumulation in Helianthus annuus L”. Chemosphere, 276, 130038. 2021. https://doi.org/10.1016/j.chemosphere.2021.130038
  105. A. Mitra, S. Chatterjee, S. Kataki, R. P. Rastogi, & D. K. Gupta. “Bacterial tolerance strategies against lead toxicity and their relevance in bioremediation application”. Environmental Science and Pollution Research, 28, pp. 14271-14284. 2021. https://doi.org/10.1007/s11356-021-12583-9
  106. S. M. Tiquia-Arashiro. “Lead absorption mechanisms in bacteria as strategies for lead bioremediation”. Applied microbiology and biotechnology, 102(13), pp. 5437-5444. 2018. https://doi.org/10.1007/s00253-018-8969-6
  107. A. Braud, V. Geoffroy, F. Hoegy, G. L. Mislin, & I. J. Schalk. “Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance”. Environmental Microbiology Reports, 2(3), pp. 419-425. 2010. https://doi.org/10.1111/j.1758-2229.2009.00126.x

Downloads

Download data is not yet available.