Preparation of a Composite Material from Palm Oil Fiber and an Ecological Emulsion of Expanded Polystyrene Post-Consumption

Main Article Content

Autores

Cindy Gutiérrez-Estupiñán https://orcid.org/0000-0003-0919-1619
José Gutiérrez-Gallego, M.Sc. https://orcid.org/0000-0002-2100-6060
Melba Sánchez-Soledad, M.Sc. https://orcid.org/0000-0003-1135-4595

Abstract

The overproduction of plastics and the wide availability of natural fibers that become a source of contamination before ending their useful life, in a context of environmental crisis, has led researchers to study how to integrate them into the production of biocomposites. For this project, the development of a composite material that integrated expanded post-consumer polystyrene (EPS) and palm fiber (OPEFB) was proposed. OPEFB fibers were obtained from palm growers in the region, being processed by drying, grinding and sieving with a particle size (Mesh of 30,40, 50, 60 and 70). To obtain the solvent of the EPS, a volume of orange essential oil (Citrus sinensis) was distilled off by steam and the amount of d-limonene present was quantified using the gas chromatography technique coupled to mass spectrometry. Subsequently, the EPS was dissolved and a solubility of 0.5 g / mL was reached and with this volume a 1: 2 water / EPS-Citrus Sinensis emulsion was formulated which was characterized using the optical microscopy technique and two dyes of different polarity to observe its affinity with both phases, allowing it to be classified as a W/O type macroemulsion. The agglomerates were made by a process of molding, pressing and heating for baking. All the above parameters were kept constant and only the fiber size varied. The tests of resistance to compression and hardness showed that, to a smaller fiber size, less hardness, resistance to compression and stiffness, so the specimens made with mesh fibers (Mesh) No. 40 showed better performance in mechanical tests.

Keywords:

Article Details

Licence

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles included in the Revista Facultad de Ingeniería are published under the Creative Commons (BY) license.

Authors must complete, sign, and submit the Review and Publication Authorization Form of the manuscript provided by the Journal; this form should contain all the originality and copyright information of the manuscript.

The authors who publish in this Journal accept the following conditions:

a. The authors retain the copyright and transfer the right of the first publication to the journal, with the work registered under the Creative Commons attribution license, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this Journal.

b. Authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly indicate that the work It was first published in this Journal.

c. Authors are allowed and recommended to publish their work on the Internet (for example on institutional or personal pages) before and during the process.
review and publication, as it can lead to productive exchanges and a greater and faster dissemination of published work.

d. The Journal authorizes the total or partial reproduction of the content of the publication, as long as the source is cited, that is, the name of the Journal, name of the author (s), year, volume, publication number and pages of the article.

e. The ideas and statements issued by the authors are their responsibility and in no case bind the Journal.

References

[1] L. Mohammed, M. N. Ansari, G. Pua, M. Jawaid, and M. S. Islam, “A review on natural fiber reinforced polymer composite and its applications,” International Journal of Polymer Science, vol. 2015, 2015. https://doi.org/10.1155/2015/243947.

[2] M. J. John, and S. Thomas, “Biofibres and biocomposites,” Carbohydrate polymers, vol. 71 (3), pp. 343-364, Feb. 2008. https://doi.org/10.1016/j.carbpol.2007.05.040.

[3] A. Alawar, A. M. Hamed, and K. Al-Kaabi, “Characterization of treated date palm tree fiber as composite reinforcement,” The Composites Part B: Engineering, vol. 40 (7), pp. 601-606, Oct. 2009. https://doi.org/10.1016/j.compositesb.2009.04.018.

[4] M. Shimao, “Biodegradation of plastics,” Current opinion in biotechnology, vol. 12 (3), pp. 242-247, Jun. 2001. https://doi.org/10.1016/S0958-1669(00)00206-8.

[5] V. Zitko, “Expanded polystyrene as a source of contaminants,” Marine Pollution Bulletin, vol. 26 (10), pp. 584-585, Oct. 1993. https://doi.org/10.1016/0025-326x(93)90412-d.

[6] P. S. Schmidt, M. H. Cioffi, H. C. Voorwald, and J. L. Silveira, “Flexural test on recycled polystyrene,” Procedia Engineering, vol. 10, pp. 930-935, Apr. 2011. https://doi.org/10.1016/j.proeng.2011.04.153.

[7] M. E. Tawfik, S. B. Eskander, and G Nawwar, “Hard wood‐composites made of rice straw and recycled polystyrene foam wastes,” Journal of Applied Polymer Science, vol. 134 (18), May. 2017. https://doi.org/10.1002/app.44770.

[8] M. T. García, G. Duque, I. Gracia, A. de Lucas, and J. F. Rodríguez, “Recycling extruded polystyrene by dissolution with suitable solvents,” Journal of material cycles and waste management, vol. 11 (1), pp. 2-5, Jan. 2009. https://doi.org/10.1007/s10163-008-0210-8.

[9] M. S. Sreekala, M. G. Kumaran, and S. Thomas, “Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties,” Journal of Applied Polymer Science, vol. 66 (5), pp. 821-835, Oct. 1997. https://doi.org/10.1002/(sici)1097-4628(19971031)66:5<821::aid-app2>3.3.co;2-l.

[10] S. Takase, and N. Shiraishi, “Studies on composites from wood and polypropylenes II,” Journal of Applied Polymer Science, vol. 37(3), pp. 645-659. Jan. 1989. https://doi.org/10.1002/app.1989.070370305.

[11] J. M. Felix, and P. Gatenholm, “The nature of adhesion in composites of modified cellulose fibers and polypropylene,” Journal of Applied Polymer Science, vol. 42 (3), pp. 609-620, Feb. 1991. https://doi.org/10.1002/app.1991.070420307.

[12] Mi. Yongli, X. Chen, and Q. Guo, "Bamboo fiber‐reinforced polypropylene composites: Crystallization and interfacial morphology," Journal of Applied Polymer Science, vol. 64 (7), pp.1267-1273, Dec. 1998. https://doi.org/10.1002/(sici)1097-4628(19970516)64:7<1267::aid-app4>3.3.co;2-b.

[13] H. D. Rozman, H. Ismail, R. M. Jaffri, A. A. Aminullah, Z. A. Mohd Ishak, “Mechanical properties of polyethylene-oil palm empty fruit bunch composites,” Polymer-Plastics Technology and Engineering, vol. 37 (4), pp. 495–507, Nov.1998. https://doi.org/10.1080/03602559808001376.

[14] K. Bledzki, S. Reihmane, and J. Gassan, “Thermoplastics Reinforced with Wood Fillers: A Literature Review,” Polymer-Plastics Technology and Engineering, vol. 37 (4), pp. 451-468, Aug. 1998. https://doi.org/10.1080/03602559808001373.

[15] H. D. Rozman, P. P. Lim, A. Abusamah, R. N. Kumar, H. Ismail, and Z. A. Mohd Ishak, “The Physical Properties of Oil Palm Empty Fruit Bunch (EFB) Composites Made from Various Thermoplastics,” International Journal of Polymeric Materials, vol. 44 (1-2), pp. 179-195, Aug. 1999. https://doi.org/10.1080/00914039908012144.

[16] P. V. Joseph, K. Joseph, and S. Thomas, “Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites,” Composites Science and Technology, vol. 59 (11), pp. 1625-1640, Aug. 1999. https://doi.org/10.1016/S0266-3538(99)00024-X.

[17] D. Nabi Saheb, and J. P. Jog. “Natural fiber polymer composites: a review,” Advances in Polymer Technology, vol.18 (4), pp. 351-363, Oct. 1999. https://doi.org/10.1002/(sici)1098-2329(199924)18:4<351::aid-adv6>3.3.co;2-o.

[18] C.A. Hill, and K. Abdul. “Effect of fiber treatments on mechanical properties of coir or oil palm fiber reinforced polyester composites,” Journal of Applied Polymer Science, vol. 78(9), pp.1685-1697, Nov. 2000. https://doi.org/10.1002/1097-4628(20001128)78:9<1685::AID-APP150>3.0.CO;2-U.

[19] H. D. Rozman, G. S. Tay, A. Abubakar, and R. N. Kumar, “Tensile properties of oil palm empty fruit bunch-polyurethane composites,” European Polymer Journal, vol. 37(9), pp. 1759-1765, Sep. 2001. https://doi.org/10.1016/S0014-3057(01)00063-5.

[20] F. Mata-Cabrera, “Utilización de composites de matriz polimérica en la fabricación de automóviles,” Revista Técnica Industrial, 2004. http://www.tecnicaindustrial.es/TIFrontal/a-1550-utilizacion-composites-matriz-polimerica-fabricacion-automoviles.aspx.

[21] S. N. Kale, and S. L. Deore. “Emulsion Micro Emulsion and Nano Emulsion: A Review,” Systematic Reviews in Pharmacy, vol. 8 (39), pp. 39-47, Oct. 2017. https://doi.org/10.5530/srp.2017.1.8.

[22] O. Torres, Reciclaje de la espuma de poliestireno mediante el uso de d-limoneno. Grade Thesis, Universidad Nacional de Ingeniería, Lima, 2004.

[23] T. M. Noguchi, Y. Miyashita, Inagaki, and H. Watanabe, “A new recycling system for expanded polystyrene using a natural solvent. Part 1. A new recycling technique,” Packaging Technology and Science, vol.11 (1), pp. 19-27, Feb. 1998. https://doi.org/10.1002/(sici)1099-1522(199802)11:1<19::aid-pts414>3.3.co;2-x.

[24] S. C. H. Mangalara, and S. Varughese. “Green Recycling Approach to Obtain Nano-and Microparticles from Expanded Polystyrene Waste,” ACS Sustainable Chemistry & Engineering, vol. 4 (11), pp. 6095-6100, Nov. 2016. https://doi.org/10.1021/acssuschemeng.6b01493.

[25] J. W. Kim, D. Lee, H. C. Shum, and D.A. Weitz, “Colloid surfactants for emulsion stabilization,” Advanced materials, vol. 20 (17), pp. 3239-3243, Sep. 2008. https://doi.org/10.1002/adma.200800484.

[26] C. A. López, Modelo de Estabilidad de Emulsiones Poliméricas. Doctoral Thesis, Universidad Nacional de Colombia, Bogotá D.C., 2012.

[27] E. E. Stashenko, Y. Combariza, and M. Puertas, Aceites Esenciales: Técnicas de extracción y análisis. Universidad Industrial de Santander, Bucaramanga, 1998.

[28] M. S. Sreekala, M. G. Kumaran, S. Joseph, M. Jacob, and S. Thomas, “Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance,” Applied Composite Materials, vol. 7 (5-6), pp. 295-329, Nov. 2000. https://doi.org/10.1023/A:1026534006291.

[29] S. Shinoj, R. Visvanathan, S. Panigrahi, and M. Kochubabu, “Oil palm fiber (OPF) and its composites: A review,” Industrial Crops and products, vol. 33 (1), pp. 7-22, Jan. 2011. https://doi.org/10.1016/j.indcrop.2010.09.009.

[30] M. Khalid, C. T. Ratnam, T. G. Chuah, S. Ali, and T. S. Choong, “Comparative study of polypropylene composites reinforced with oil palm empty fruit bunch fiber and oil palm derived cellulose,” Materials & Design, vol. 29 (1), pp. 173-178, Jan. 2008. https://doi.org/10.1016/j.matdes.2006.11.002.

[31] N. W. A Razak, and A. Kalam, “Effect of OPEFB size on the mechanical properties and water absorption behaviour of OPEFB/PPnanoclay/PP hybrid composites,” Procedia Engineering, vol. 41, pp. 1593-1599, May. 2012. https://doi.org/10.1016/j.proeng.2012.07.355.

[32] L. Prabhu, V. Krishnaraj, S. Sathish, S. GokulKumar, and N. Karthi, “Study of mechanical and morphological properties of jute-tea leaf fiber reinforced hybrid composites: Effect of glass fiber hybridization,” in International conference on Materials and Manufacturing Methods, India, Oct. 2019. https://doi.org/10.1016/j.matpr.2019.09.132.

[33] N. Saba, M. Jawaid, and M. T. H. Sultan, “Thermal properties of oil palm biomass based composites,” Lignocellulosic Fibre and Biomass-Based Composite Materials, vol. 2017, pp. 95-122, Jun. 2017. https://doi.org/10.1016/B978-0-08-100959-8.00006-8.

[34] D. R. Askeland, and W. Wright, Ciencia e Ingeniería de los Materiales. México: International Thomson Editores, 1998.

Downloads

Download data is not yet available.