Smart Lumini: A Smart Lighting System for Academic Environments Using IOT-Based Open-Source Hardware

Main Article Content


Carlos Andrés González-Amarillo
Cristian Leonardo Cárdenas-García
Julián Andrés Caicedo-Muñoz, M.Sc.
Miguel Angel Mendoza-Moreno, Ph. D.


Rational energy consumption in large buildings depends on both the users' consumption culture and the management systems implemented. In Colombia, few buildings have an energy management system characterized by its adaptability to the user and with a certain degree of intelligence. Thus, this document describes the summarized research process for the development of an Internet of Things (IoT) system, which has been designed to promote an intelligent lighting service in an academic environment. The IoT system orchestrates a series of sensors, monitoring systems and controlled actions, all based on the principle of making the system functions and consumption records available in real-time, via web services. The devices used are "Things" with improved functionality, becoming "Smart Things" within the IoT paradigm. Methodologically, an experimental process was followed, linking the development of electronic tools, the construction of services, and the development of interfaces for a pleasant user experience. Research contributes to two essential areas: intelligent buildings, through the intelligent adaptation of an environment; and sustainability and eco-innovation, since the system provides appropriate information for environmental education, in terms of real-time energy consumption, that impacts directly on the fair-use culture of a service expensive for the environment.


Article Details


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles included in the Revista Facultad de Ingeniería are published under the Creative Commons (BY) license.

Authors must complete, sign, and submit the Review and Publication Authorization Form of the manuscript provided by the Journal; this form should contain all the originality and copyright information of the manuscript.

The authors who publish in this Journal accept the following conditions:

a. The authors retain the copyright and transfer the right of the first publication to the journal, with the work registered under the Creative Commons attribution license, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this Journal.

b. Authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly indicate that the work It was first published in this Journal.

c. Authors are allowed and recommended to publish their work on the Internet (for example on institutional or personal pages) before and during the process.
review and publication, as it can lead to productive exchanges and a greater and faster dissemination of published work.

d. The Journal authorizes the total or partial reproduction of the content of the publication, as long as the source is cited, that is, the name of the Journal, name of the author (s), year, volume, publication number and pages of the article.

e. The ideas and statements issued by the authors are their responsibility and in no case bind the Journal.


[1] S. Mehreen, and S. Patidar, “Understanding the energy consumption and occupancy of a multi-purpose academic building,” Energy and Buildings, vol. 87, pp. 155-165, 2015.

[2] P. Rocha, A. Siddiqui, and M. Stadler, “Improving energy efficiency via smart building energy management systems: A comparison with policy measures,” Energy and Buildings, vol. 88, pp. 203-213, 2015.

[3] W. Cui, Y. Kim, and T. S. Rosing, “Cross-platform machine learning characterization for task allocation in iot ecosystems,” in IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), pp. 1-7, 2017.

[4] G. R. González, M. M. Organero, and C. D. Kloos, “Early infrastructure of an internet of things in spaces for learning,” in Eighth IEEE International Conference on Advanced Learning Technologies, pp. 381-383, 2008.

[5] B. L. Risteska, and K. V. Trivodaliev, “A review of internet of things for smart home: Challenges and solutions,” Journal of Cleaner Production, vol. 140, pp. 1454-1464, 2017.

[6] G. Ramírez-Gonzalez, C. Córdoba-Paladinez, O. Sotelo-Torres, C. Palacios, M. Muñoz-Organero, and C. Delgado-Kloos, “Pervasive learning activities for the lms.lrn through android mobile devices with NFC support,” in IEEE 12th International Conference on Advanced Learning Technologies, pp. 672-673, 2012.

[7] L. Pocero, D. Amaxilatis, G. Mylonas, and I. Chatzigiannakis, “Open source IoT meter devices for smart and energy-efficient school buildings,” HardwareX, vol. 1, pp. 54-55, 2017.

[8] G. Ramírez, M. Muñoz, and C. Delgado, “Exploring touching learning environments,” in M. Kendall, and B. Samways, eds., Learning to Live in the Knowledge Society, pp. 93-96, United States, Boston: Springer, 2008.

[9] D. Bonino, and F. Corno, “Domains: Domain-based modeling for ambient intelligence,” Pervasive and Mobile Computing, vol. 8 (4), pp. 614-628, 2012.

[10] A. Szalai, T. Szabo, P. Horvaáth, A. Timár, and A. Poppe, “Smart SSL: Application of IoT/CPS design platforms in ledbased street-lighting luminaires,” in IEEE Lighting Conference of the Visegrad Countries, pp. 1-6, 2016.

[11] Y. S. Tan, Y. T. Ng, and J. S. Choong, “Internet-of-things enabled real-time monitoring of energy efficiency on manufacturing shop floors,” Procedia CIRP, vol. 61, pp. 376-381, 2017.

[12] J. Malek, M. Laroussi, and H. Ben Ghezala, “A design framework for smart city learning scenarios,” in 9th International Conference on Intelligent Environments, pp. 9-15, 2013.

[13] D. Gracanin, M. Handosa, H. G. Elmongui, and K. Matkovíc, “An approach to user interactions with IoT-enabled spaces,” in 14th International Conference on Telecommunications, pp. 139-146, 2017.

[14] I. Khajenasiri, A. Estebsari, M. Verhelst, and G. Gielen, “A review on internet of things solutions for intelligent energy control in buildings for smart city applications,” Energy Procedia, vol. 111, pp. 770-779, 2017.

[15] J. W. P. Ng, N. Azarmi, M. Leida, F. Saffre, A. Afzal, and P. D. Yoo, “The intelligent campus (icampus): End-to-end learning lifecycle of a knowledge ecosystem,” in Sixth International Conference on Intelligent Environments, pp. 332-337, 2010.

[16] C. E. Kontokosta, “Modeling the energy retrofit decision in commercial office buildings,” Energy and Buildings, vol. 131, pp. 1-20, 2016.

[17] R. De Lieto, C. Guattari, L. Evangelisti, G. Battista, E. Carnielo, and P. Gori, “Building energy performance analysis: A case study,” Energy and Buildings, vol. 87, pp. 87-94, 2015.

[18] F. G. Montoya, A. Peña-García, A. Juaidi, and F. Manzano-Agugliaro, “Indoor lighting techniques: An overview of evolution and new trends for energy saving,” Energy and Buildings, vol. 140, pp. 50-60, 2017.

[19] Z. Wang, and R. S. Srinivasan, “A review of artificial intelligence-based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models,” Renewable and Sustainable Energy Reviews, vol. 75, pp. 796-808, 2017.

[20] R. Madeira, and L. Nunes, “A machine learning approach for indirect human presence detection using IoT devices,” in Eleventh International Conference on Digital Information Manage110, pp. 145-150, 2016.

[21] C. Gonzalez-Amarillo, C, Cárdenas-García, and M. Mendoza-Moreno, “M2M system for efficient water consumption in sanitary services, based on intelligent environment,” DYNA, vol. 85, pp. 311-318, 2018.

[22] C. A. González-Amarillo, J. C. Corrales-Muñoz, M. Mendoza-Moreno, A. M. González Amarillo, A. F. Hussein, N. Arunkumar, and G. Ramírez-Gonzalez, “An IoT-based traceability system for greenhouse seedling crops,” IEEE Access, vol. 6, pp. 67528-67535, 2018.


Download data is not yet available.

Most read articles by the same author(s)