Solar Radiation Prediction on Photovoltaic Systems Using Machine Learning Techniques

Predicción de radiación solar en sistemas fotovoltaicos utilizando técnicas de aprendizaje automático

Main Article Content

Luis Eduardo Ordoñez-Palacios
Daniel Andrés León-Vargas, M.Sc.
Víctor Andrés Bucheli-Guerrero, Ph. D.
Hugo Armando Ordoñez-Eraso, Ph. D.

Abstract

Estimation of solar radiation is essential to help decision-makers in the planning of isolated solar energy farms or connected to electricity distribution networks to take advantage of renewable energy sources, reduce the impact produced by climate change, and increase coverage rates in electricity service. The number of existing measurement stations is insufficient to cover the entire geography of a region, and many of them are not capturing solar radiation data. Therefore, it is important to use mathematical, statistical, and artificial intelligence models, which allow predicting solar radiation from meteorological data available. In this work, datasets taken from measurement stations located in the cities of Cali and Villavicencio were used, in addition to a dataset generated by the World Weather Online API for the town of Mocoa, to carry out solar radiation estimations using different machine learning techniques for regression and classification to evaluate their performance. Although in most related works researchers used deep learning to predict solar radiation, this work showed that, while artificial neural networks are the most widely used technique, other machine learning algorithms such as Random Forest, Vector Support Machines and AdaBoost, also provide estimates with sufficient precision to be used in this field of study.

Keywords:

Downloads

Download data is not yet available.

Article Details

Author Biographies (SEE)

Luis Eduardo Ordoñez-Palacios, Universidad del Valle

Roles: Conceptualization, Formal Analysis, Investigation, Methodology, Writing - original draft, Writing - review & edit.

Daniel Andrés León-Vargas, M.Sc., Universidad del Valle

Roles: Formal analysis, Investigation, Writing - Review $ editing.

Víctor Andrés Bucheli-Guerrero, Ph. D., Universidad del Valle

Roles: Formal analysis, Supervision, validation, Writing - review & editing.

Hugo Armando Ordoñez-Eraso, Ph. D., Universidad del Cauca

Roles: Formal analysis, Supervision, Validation, Writing - review & editing.

References (SEE)

[1] A. Doval Adán, “Los grandes problemas geopolíticos del desarrollo mundial: hacia una planificación global del planeta,” in XVIII Congreso de Geógrafos Españoles 2003. https://minerva.usc.es/xmlui/handle/10347/20719

[2] Z. Li, “Global Warming: Causes and Effects,” in Southern California Conferences for Undergraduate Research, 2019. https://www.sccur.org/sccur/fall_2019_conference/poster_session_4/131

[3] M. R. Gámez, A. V. Pérez, A. M. V. Quiroz, and W. M. S. Arauz, “Mejora de la calidad de la energía con sistemas fotovoltaicos en las zonas rurales,” Revista Científica, vol. 3 (33), pp. 265-274, 2018. https://doi.org/10.14483/23448350.13104

[4] F. G. Cozman, “O futuro da (pesquisa em) inteligência artificial: algumas direções,”, Revista USP, n. 124, pp. 11-20, 2020. https://doi.org/10.11606/issn.2316-9036.v0i124p11-20

[5] H. Ordóñez, C. Cobos, and V. Bucheli, “Modelo de machine learning para la predicción de las tendencias de hurto en Colombia”, Revista Ibérica de Sistemas y Tecnologías de la Información, vol. 29, pp. 494-506, 2020.

[6] M. Haenlein, and A. Kaplan, “A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence,” California Management Review, vol. 61 (4), pp. 5-14, 2019. https://doi.org/10.1177/0008125619864925

[7] N. Premalatha, and A. Arasu, “Prediction of solar radiation for solar systems by using ANN models with different back propagation algorithms”, Journal of Applied Research and Technology, vol. 14 (3), 2016. https://doi.org/10.1016/j.jart.2016.05.001

[8] A. Qazi, H. Fayaz, A. Wadi, R. G. Raj, N. A. Rahim, and W. A. Khan, “The artificial neural network for solar radiation prediction and designing solar systems: a systematic literature review,” Journal of Cleaner Production, vol. 104, pp. 1-12, 2015. https://doi.org/10.1016/j.jclepro.2015.04.041

[9] A. K. Yadav, and S. S. Chandel, “Solar radiation prediction using Artificial Neural Network techniques: A review,” Renewable and Sustainable Energy Reviews, vol. 33, pp. 772-781, 2014. https://doi.org/10.1016/j.rser.2013.08.055

[10] M. Ozgoren, M. Bilgili, and B. Sahin, “Estimation of global solar radiation using ANN over Turkey,” Expert Systems with Applications, vol. 39 (5), pp. 5043-5051, 2012. https://doi.org/10.1016/j.eswa.2011.11.036

[11] A. Koca, H. F. Oztop, Y. Varol, and G. O. Koca, “Estimation of solar radiation using artificial neural networks with different input parameters for Mediterranean region of Anatolia in Turkey,” Expert Systems with Applications, vol. 38 (7), pp. 8756-8762, 2011. https://doi.org/10.1016/j.eswa.2011.01.085

[12] A. Rahimikhoob, “Estimating global solar radiation using artificial neural network and air temperature data in a semi-arid environment,” Renewable Energy, vol. 35 (9), pp. 2131-2135, 2010. https://doi.org/10.1016/j.renene.2010.01.029

[13] D. Li, W. Chen, S. Li, and S. Lou, “Estimation of Hourly Global Solar Radiation Using Multivariate Adaptive Regression Spline (MARS) – A Case Study of Hong Kong,” Energy, vol. 186, e115857, 2019. https://doi.org/10.1016/j.energy.2019.115857

[14] J. Liu, M. Y. Cao, D. Bai, and R. Zhang, “Solar radiation prediction based on random forest of feature-extraction», IOP Conference Series: Materials Science Engineering, vol. 658, e012006, 2019. https://doi.org/10.1088/1757-899X/658/1/012006

[15] S. Li, H. Ma, and W. Li, “Typical solar radiation year construction using k-means clustering and discrete-time Markov chain,” Applied Energy, vol. 205, pp. 720-731, 2017. https://doi.org/10.1016/j.apenergy.2017.08.067

[16] R. Meenal, and A. I. Selvakumar, “Assessment of SVM, Empirical and ANN based solar radiation prediction models with most influencing input parameters,” Renewable Energy, vol. 121, pp. 324-343, 2017. https://doi.org/10.1016/j.renene.2017.12.005

[17] M. Lazzaroni, S. Ferrari, V. Piuri, A. Salman, L. Cristaldi, and M. Faifer, “Models for solar radiation prediction based on different measurement sites,” Measurement, vol. 63, pp. 346-363, 2015. https://doi.org/10.1016/j.measurement.2014.11.037

[18] E. S. Mostafavi, S. M. Mousavi, and P. Jiao, “Next Generation Prediction Model for Daily Solar Radiation on Horizontal Surface Using a Hybrid Neural Network and Simulated Annealing Method,” Energy conversion and management, 2017. http://agris.fao.org/agris-search/search.do?recordID=US201800045628

[19] H. Sharadga, S. Hajimirza, and R. S. Balog, “Time series forecasting of solar power generation for large-scale photovoltaic plants,” Renewable Energy, vol. 150, pp. 797-807, 2020. https://doi.org/10.1016/j.renene.2019.12.131

[20] A. Rabehi, M. Guermoui, and D. Lalmi, “Hybrid models for global solar radiation prediction: a case study», International Journal of Ambient Energy, vol. 41 (1), pp. 31-40, 2020. https://doi.org/10.1080/01430750.2018.1443498

[21] C. Koo, W. Li, S. H. Cha, and S. Zhang, “A novel estimation approach for the solar radiation potential with its complex spatial pattern via machine-learning techniques,” Renewable Energy, vol. 133, pp. 575-592, 2019. https://doi.org/10.1016/j.renene.2018.10.066

[22] S. Hussain, and A. AlAlili, “A hybrid solar radiation modeling approach using wavelet multiresolution analysis and artificial neural networks,” Applied Energy, vol. 208, pp. 540-550, 2017. https://doi.org/10.1016/j.apenergy.2017.09.100

Citado por:

Most read articles by the same author(s)