Interpretability in the Field of Plant Disease Detection: A Review

Interpretabilidad en el campo de la detección de enfermedades en las plantas: Una revisión

Main Article Content

Daniel-David Leal-Lara
Julio Barón-Velandia
Camilo-Enrique Rocha-Calderón

Abstract

The early detection of diseases in plants through artificial intelligence techniques has been a very important technological advance for agriculture since, through machine learning and optimization algorithms, it has been possible to increase the yield of various crops in several countries around the world. Different researchers have focused their efforts on developing models that allow supporting the task of detecting diseases in plants as a solution to the traditional techniques used by farmers. In this systematic literature review, an analysis of the most relevant articles is presented, in which image processing techniques and machine learning were used to detect diseases by means of images of the leaves of different crops. In turn, an analysis of the interpretability and precision of these methods is carried out, considering each phase of the image processing, segmentation, feature extraction and learning processes of each model. In this way, there is evidence of a void in the field of interpretability since the authors have focused mainly on obtaining good results in their models, beyond providing the user with a clear explanation of the characteristics of the model.

Keywords:

Downloads

Download data is not yet available.

Article Details

Author Biographies (SEE)

Daniel-David Leal-Lara, Universidad Distrital “Francisco José de Caldas”

Roles: Conceptualization, Research, Content - Curation, Methodology, Writing - Original draft, Writing – Review & editing.

Julio Barón-Velandia, Universidad Distrital “Francisco José de Caldas”

Roles: Conceptualization, Methodology, Writing - Original draft, Writing – Review & editing.

Camilo-Enrique Rocha-Calderón, Universidad Distrital “Francisco José de Caldas”

Roles: Validation, Writing – Review & editing.

References (SEE)

R. Yadav, Y. Kumar, S. Nagpal, “Plant Leaf Disease Detection and Classification Using Particle Swarm Optimization,” in First International Conference in Machine Learning for Networking, 2019, pp. 294–306. https://doi.org/10.1007/978-3-030-19945-6_21

J. Trivedi, Y. Shamnani, R. Gajjar, “Plant Leaf Disease Detection Using Machine Learning,” Communications in Computer and Information Science, vol. 1214, pp. 267–276, 2020. https://doi.org/10.1007/978-981-15-7219-7_23

X. Deng, Y. Lan, T. Hong, J. Chen, “Citrus greening detection using visible spectrum imaging and C-SVC,” Computers and Electronics in Agriculture, vol. 130, pp. 177–183, 2016. https://doi.org/10.1016/j.compag.2016.09.005

E. Omrani, B. Khoshnevisan, S. Shamshirband, H. Saboohi, N. B. Anuar, M. H. N. M. Nasir, “Potential of radial basis function-based support vector regression for apple disease detection,” Measurement, vol. 55, pp. 512–519, 2014. https://doi.org/10.1016/j.measurement.2014.05.033

J. Shin, Y. K. Chang, B. Heung, T. Nguyen-Quang, G. W. Price, A. Al-Mallahi, “Effect of directional augmentation using supervised machine learning technologies: A case study of strawberry powdery mildew detection,” Biosystems Engineering, vol. 194, pp. 49–60, 2020. https://doi.org/10.1016/j.biosystemseng.2020.03.016

J. F. I. Nturambirwe, U. L. Opara, “Machine learning applications to non-destructive defect detection in horticultural products,” Biosystems Engineering, vol. 189, pp. 60–83, 2019. https://doi.org/10.1016/j.biosystemseng.2019.11.011

P. Sharma, Y. P. S. Berwal, W. Ghai, “Performance analysis of deep learning CNN models for disease detection in plants using image segmentation,” Information Processing in Agriculture, vol. 7, no. 4, pp. 566–574, 2020. https://doi.org/10.1016/j.inpa.2019.11.001

A. Cruz, Y. Ampatzidis, R. Pierro, A. Materazzi, A. Panattoni, L. De-Bellis, A. Luvisi, “Detection of grapevine yellows symptoms in Vitis vinifera L. with artificial intelligence,” Computers and Electronics in Agriculture, vol. 157, pp. 63–76, 2019. https://doi.org/10.1016/j.compag.2018.12.028

J. G. A. Barbedo, L. V. Koenigkan, T. T. Santos, “Identifying multiple plant diseases using digital image processing,” Biosystems Engineering, vol. 147, pp. 104–116, 2016. https://doi.org/10.1016/j.biosystemseng.2016.03.012

G. Yang, Y. He, Y. Yang, B. Xu, “Fine-Grained Image Classification for Crop Disease Based on Attention Mechanism,” Frontiers in Plant Science, vol. 11, pp. 1–15, 2020. https://doi.org/10.3389/fpls.2020.600854

S. Shrivastava, S. K. Singh, D. S. Hooda, “Color sensing and image processing-based automatic soybean plant foliar disease severity detection and estimation,” Multimedia Tools and Applications, vol. 74, no. 24, pp. 11467–11484, 2015. https://doi.org/10.1007/s11042-014-2239-0

M. Massaro, K. Handley, C. Bagnoli, J. Dumay, “Knowledge management in small and medium enterprises: a structured literature review,” Journal of Knowledge Management, vol. 20, no. 2, pp. 258–291, 2016. https://doi.org/10.1108/JKM-08-2015-0320

V. Singh, A. K. Misra, “Detection of plant leaf diseases using image segmentation and soft computing techniques,” Information Processing in Agriculture, vol. 4, no. 1, pp. 41–49, 2017. https://doi.org/10.1016/j.inpa.2016.10.005

J. Siebring, J. Valente, M. H. D. Franceschini, J. Kamp, L. Kooistra, “Object-based image analysis applied to low altitude aerial imagery for potato plant trait retrieval and pathogen detection,” Sensors (Switzerland), vol. 19, no. 24, 2019. https://doi.org/10.3390/s19245477

M. Kerkech, A. Hafiane, R. Canals, “Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach,” Computers and Electronics in Agriculture, vol. 174, p. 105446, 2020. https://doi.org/10.1016/j.compag.2020.105446

H. Ali, M. I. Lali, M. Z. Nawaz, M. Sharif, B. A. Saleem, “Symptom based automated detection of citrus diseases using color histogram and textural descriptors,” Computers and Electronics in Agriculture, vol. 138, pp. 92–104, 2017. https://doi.org/10.1016/j.compag.2017.04.008

D. Moshou, X.-E. Pantazi, D. Kateris, I. Gravalos, “Water stress detection based on optical multisensor fusion with a least squares support vector machine classifier,” Biosystems Engineering, vol. 117, pp. 15–22, 2014. https://doi.org/10.1016/j.biosystemseng.2013.07.008

M. Zhang, Q. Meng, “Automatic citrus canker detection from leaf images captured in field,” Pattern Recognition Letters, vol. 32, no. 15, pp. 2036–2046, 2011. https://doi.org/10.1016/j.patrec.2011.08.003

S. S. Chouhan, U. P. Singh, U. Sharma, S. Jain, “Leaf disease segmentation and classification of Jatropha Curcas L. and Pongamia Pinnata L. biofuel plants using computer vision based approaches,” Journal of the International Measurement Confederation, vol. 171, e108796, 2021. https://doi.org/10.1016/j.measurement.2020.108796

S. Hernández, J. L. López, “Uncertainty quantification for plant disease detection using Bayesian deep learning,” Applied Soft Computing, vol. 96, e106597, 2020. https://doi.org/10.1016/j.asoc.2020.106597

P. Wspanialy, M. Moussa, “A detection and severity estimation system for generic diseases of tomato greenhouse plants,” Computers and Electronics in Agriculture, vol. 178, p. 105701, 2020. https://doi.org/10.1016/j.compag.2020.105701

M. Sharif, M. A. Khan, Z. Iqbal, M. F. Azam, M. I. U. Lali, M. Y. Javed, “Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection,” Computers and Electronics in Agriculture, vol. 150, pp. 220–234, 2018. https://doi.org/10.1016/j.compag.2018.04.023

Y. Xiong, L. Liang, L. Wang, J. She, M. Wu, “Identification of cash crop diseases using automatic image segmentation algorithm and deep learning with expanded dataset,” Computers and Electronics in Agriculture, vol. 177, no. July, p. 105712, 2020. https://doi.org/10.1016/j.compag.2020.105712

S. Khan, M. Narvekar, “Novel fusion of color balancing and superpixel based approach for detection of tomato plant diseases in natural complex environment,” Journal of King Saud University - Computer and Information Sciences, In-press, 2020. https://doi.org/10.1016/j.jksuci.2020.09.006

G. Sambasivam, G. D. Opiyo, “A predictive machine learning application in agriculture: Cassava disease detection and classification with imbalanced dataset using convolutional neural networks,” Egyptian Informatics Journal, vol. 22, no. 1, pp. 27–34, 2020. https://doi.org/10.1016/j.eij.2020.02.007

S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, D. Stefanovic, “Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification,” Computational Intelligence and Neuroscience, vol. 2016, e 3289801, 2016. https://doi.org/10.1155/2016/3289801

M. Gomez Selvaraj, A. Vergara, F. Montenegro, H. Alonso-Ruiz, N. Safari, D. Raymaekers, W. Ocimati, J. Ntamwira, L. Tits, A. Bonaventure Omondi, G. Blomme, “Detection of banana plants and their major diseases through aerial images and machine learning methods: A case study in DR Congo and Republic of Benin,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 169, pp. 110–124, 2020. https://doi.org/10.1016/j.isprsjprs.2020.08.025

J. Behmann, J. Steinrücken, L. Plümer, “Detection of early plant stress responses in hyperspectral images,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 93, pp. 98–111, 2014. https://doi.org/10.1016/j.isprsjprs.2014.03.016

J. da Rocha Miranda, M. de Carvalho Alves, E. A. Pozza, H. Santos Neto, “Detection of coffee berry necrosis by digital image processing of landsat 8 oli satellite imagery,” International Journal of Applied Earth Observation and Geoinformation, vol. 85, e101983, 2020. https://doi.org/10.1016/j.jag.2019.101983

H. Santoso, H. Tani, X. Wang, A. E. Prasetyo, R. Sonobe, “Classifying the severity of basal stem rot disease in oil palm plantations using WorldView-3 imagery and machine learning algorithms,” International Journal of Remote Sensing, vol. 40, no. 19, pp. 7624–7646, 2019. https://doi.org/10.1080/01431161.2018.1541368

Q. Gu, L. Sheng, T. Zhang, Y. Lu, Z. Zhang, K. Zheng, H. Hu, H. Zhou, “Early detection of tomato spotted wilt virus infection in tobacco using the hyperspectral imaging technique and machine learning algorithms,” Computers and Electronics in Agriculture, vol. 167, e105066, 2019. https://doi.org/10.1016/j.compag.2019.105066

T. Poblete, C. Camino, P. S. A. Beck, A. Hornero, T. Kattenborn, M. Saponari, D. Boscia, J. A. Navas-Cortes, P. J. Zarco-Tejada, “Detection of Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: Assessing bandset reduction performance from hyperspectral analysis,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 162, pp. 27–40, 2020. https://doi.org/10.1016/j.isprsjprs.2020.02.010

J. Xia, H. X. Cao, Y. W. Yang, W. X. Zhang, Q. Wan, L. Xu, D. K. Ge, W. Y, Zhang, Y. Q. Ke, B. Huang, “Detection of waterlogging stress based on hyperspectral images of oilseed rape leaves (Brassica napus L.),” Computers and Electronics in Agriculture, vol. 159, pp. 59–68, 2019. https://doi.org/10.1016/j.compag.2019.02.022

M. Kerkech, A. Hafiane, R. Canals, “VddNet: Vine disease detection network based on multispectral images and depth map,” Remote Sensing, vol. 12, no. 20, pp. 1–18, 2020. https://doi.org/10.3390/rs12203305

M. S. Mustafa, Z. Husin, W. K. Tan, M. F. Mavi, R. S. M. Farook, “Development of automated hybrid intelligent system for herbs plant classification and early herbs plant disease detection,” Neural Computing and Applications, vol. 32, no. 15, pp. 11419–11441, 2020. https://doi.org/10.1007/s00521-019-04634-7

S. Zhang, Z. You, X. Wu, “Plant disease leaf image segmentation based on superpixel clustering and EM algorithm,” Neural Computing and Applications, vol. 31, pp. 1225–1232, 2019. https://doi.org/10.1007/s00521-017-3067-8

F. Wang, R. Wang, C. Xie, P. Yang, L. Liu, “Fusing multi-scale context-aware information representation for automatic in-field pest detection and recognition,” Computers and Electronics in Agriculture, vol. 169, e105222, 2020. https://doi.org/10.1016/j.compag.2020.105222

W. S. Kim, D. H. Lee, Y. J. Kim, “Machine vision-based automatic disease symptom detection of onion downy mildew,” Computers and Electronics in Agriculture, vol. 168, e105099, 2020. https://doi.org/10.1016/j.compag.2019.105099

P. Boissard, V. Martin, S. Moisan, “A cognitive vision approach to early pest detection in greenhouse crops,” Computers and Electronics in Agriculture, vol. 62, no. 2, pp. 81–93, 2008. https://doi.org/10.1016/j.compag.2007.11.009

J. I. Arribas, G. V. Sánchez-Ferrero, G. Ruiz-Ruiz, J. Gómez-Gil, “Leaf classification in sunflower crops by computer vision and neural networks,” Computers and Electronics in Agriculture, vol. 78, no. 1, pp. 9–18, 2011. https://doi.org/10.1016/j.compag.2011.05.007

M. M. Ozguven, K. Adem, “Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms,” Physica A: Statistical Mechanics and its Applications, vol. 535, e122537, 2019. https://doi.org/10.1016/j.physa.2019.122537

S. E. A. Raza, G. Prince, J. P. Clarkson, N. M. Rajpoot, “Automatic detection of diseased tomato plants using thermal and stereo visible light images,” PLoS One, vol. 10, no. 4, pp. 1–20, 2015. https://doi.org/10.1371/journal.pone.0123262

M. S. Mohd Asaari, Mohd Asaari, P. Mishra, S. Mertens, S. Dhondt, D. Inzé, N. Wuyts, P. Scheunders, “Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 138, pp. 121–138, 2018. https://doi.org/10.1016/j.isprsjprs.2018.02.003

R. Karthik, M. Hariharan, S. Anand, P. Mathikshara, A. Johnson, R. Menaka, “Attention embedded residual CNN for disease detection in tomato leaves,” Applied Soft Computing Journal, vol. 86, e105933, 2019. https://doi.org/10.1016/j.asoc.2019.105933

H. Zhu, B. Chu, C. Zhang, F. Liu, L. Jiang, Y. He, “Hyperspectral Imaging for Presymptomatic Detection of Tobacco Disease with Successive Projections Algorithm and Machine-learning Classifiers,” Scientific Reports, vol. 7, no. 1, pp. 1–12, 2017. https://doi.org/10.1038/s41598-017-04501-2

T. Kasinathan, D. Singaraju, S. R. Uyyala, “Insect classification and detection in field crops using modern machine learning techniques,” Information Processing in Agriculture, vol. 8, no. 3, pp. 446-457, 2020. https://doi.org/10.1016/j.inpa.2020.09.006

R. Van De Vijver, K. Mertens, K. Heungens, B. Somers, D. Nuyttens, I. Borra-Serrano, P. Lootens, I. Roldán-Ruiz, J. Vangeyte, W. Saeys, “In-field detection of Alternaria solani in potato crops using hyperspectral imaging,” Computers and Electronics in Agriculture, vol. 168, e105106, 2019. https://doi.org/10.1016/j.compag.2019.105106

P. Sharma, Y. P. S. Berwal, W. Ghai, “Performance analysis of deep learning CNN models for disease detection in plants using image segmentation,” Information Processing in Agriculture, vol. 7, no. 4, pp. 566–574, 2020. https://doi.org/10.1016/j.inpa.2019.11.001

D. S. Tan, , R. Leong, A. Laguna, C. Ngo, Angelyn Lao, D. Amalin, D. Alvindia, “AuToDiDAC: Automated Tool for Disease Detection and Assessment for Cacao Black Pod Rot,” Crop Protection, vol. 103, pp. 98–102, 2018. https://doi.org/10.1016/j.cropro.2017.09.017

J. A. Xia, H. X. Cao, Y. W. Yang, W. X. Zhang, Q. Wan, L- Xu, D. K. Ge, W. Y. Zhang, Y. Q. Ke, B. Huang, “Detection of waterlogging stress based on hyperspectral images of oilseed rape leaves (Brassica napus L.),” Computers and Electronics in Agriculture, vol. 159, pp. 59–68, 2019. https://doi.org/10.1016/j.compag.2019.02.022

A. Alsuwaidi, B. Grieve, H. Yin, “Feature-Ensemble-Based Novelty Detection for Analyzing Plant Hyperspectral Datasets,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote, vol. 11, no. 4, pp. 1041–1055, 2018. https://doi.org/10.1109/JSTARS.2017.2788426

J. Behmann, J. Steinrücken, L. Plümer, “Detection of early plant stress responses in hyperspectral images,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 93, pp. 98–111, 2014. https://doi.org/10.1016/j.isprsjprs.2014.03.016

V. Singh, A. K. Misra, “Detection of plant leaf diseases using image segmentation and soft computing techniques,” Information Processing in Agriculture, vol. 4, no. 1, pp. 41–49, 2017. https://doi.org/10.1016/j.inpa.2016.10.005

Citado por: