Solid-State and Super Solidus Liquid Phase Sintering of 4340 Steel SLM Powders Shaped by Fused Filament Fabrication

Sinterización en fase líquida super solidus y de estado sólido de polvos SLM de acero 4340 formados por fabricación de filamentos fundidos

Main Article Content

Andres-Fernando Gil-Plazas
Julián-David Rubiano-Buitrago
Luis-Alejandro Boyacá-Mendivelso
Liz-Karen Herrera-Quintero


4340 steel powders were processed with an additive manufacturing process using the FFF (Fused Filament Fabrication) technique. A composite filament was developed to print samples and study the effect of the bed and nozzle temperatures on its physical and microstructural properties. The printed samples were debinded and sintered by: Solid State (SS) at 1300 °C or SLPS (Supersolidus Liquid Phase Sintering) at 1420 °C. Metallography and scanning electron microscopy (SEM) identified the microstructure and phases. The hardness of the sintered samples was measured with the Vickers method. The SLPS process contributes to better densification and volume contraction; however, it promotes geometrical distortion of the samples compared to the SS samples. The microstructure of the sintered samples consists of ferrite situated in the original austenite grain and bainite. The sintering mechanism significantly influenced the hardness of the samples. Finally, a part was designed, printed, debinded, and sintered with the aim of studying the maximum inclination angle, the minimum vertical and horizontal holes, and the minimum vertical layer thickness, which can be obtained through the whole process.



Download data is not yet available.

Article Details

Author Biographies (SEE)

Andres-Fernando Gil-Plazas, Servicio Nacional de Aprendizaje

Roles: Conceptualization, Research, Methodology, Writing - Original draft, Writing – Review & editing.

Julián-David Rubiano-Buitrago, Universidad Nacional de Colombia

Roles: Conceptualization, Research, Methodology, Writing - Original draft, Writing – Review & editing.

Luis-Alejandro Boyacá-Mendivelso, Universidad Nacional de Colombia

Roles: Conceptualization, Visualization.

Liz-Karen Herrera-Quintero, Universidad Nacional de Colombia

Roles: Conceptualization, Supervision.

References (SEE)

H. E. Quinlan, T. Hasan, J. Jaddou, A. J. Hart, “Industrial and Consumer Uses of Additive Manufacturing: A Discussion of Capabilities, Trajectories, and Challenges,” Journal of Industrial Ecology, vol. 21, pp. S15–S20, 2017.

C. R. Deckard, United States Patent, no. 19, p. 14, 1997

G. H. Loh, E. Pei, J. Gonzalez-Gutierrez, M. Monzón, “An overview of material extrusion troubleshooting,” Applied Sciences (Switzerland), vol. 10, no. 14, e4776, 2020.

M. K. Agarwala, R. Van Weeren, A. Bandyopadhyay, A. Safari, S. C. Danforth, W. R. Priedeman, “Filament Feed Materials for Fused Deposition Processing of Ceramics and Metals,” in Proceedings ofthe Solid Freeform Fabrication Symposium, pp. 451–458, 1996.

J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, C. Holzer, “Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives,” Materials, vol. 11, no. 5, e840, 2018.

A. Levy, A. Miriyev, A. Elliott, S. S. Babu, N. Frage, “Additive manufacturing of complex-shaped graded TiC/steel composites,” Materials and Design, vol. 118, pp. 198–203, 2017.

P. Singh, V. K. Balla, S. V. Atre, R. M. German, K. H. Kate, “Factors affecting properties of Ti-6Al-4V alloy additive manufactured by metal fused filament fabrication,” Powder Technology, vol. 386, pp. 9–19, 2021.

Y. Zhang, L. Poli, E. Garratt, S. Foster, A. Roch, “Utilizing Fused Filament Fabrication for Printing Iron Cores for Electrical Devices,” 3D Printing and Additive Manufacturing, vol. 7, no. 6, pp. 279–287, 2020.

M. Vaezi, P. Drescher, H. Seitz, “Beamless Metal Additive Manufacturing,” Materials, vol. 13, no. 4, e922, 2020.

M. Galati, P. Minetola, “Analysis of density, roughness, and accuracy of the atomic diffusion additive manufacturing (ADAM) process for metal parts,” Materials, vol. 12, no. 24, e4122, 2019.

C. Kukla, S. Cano, D. Kaylani, S. Schuschnigg, C. Holzer, J. Gonzalez-Gutierrez, “Debinding behaviour of feedstock for material extrusion additive manufacturing of zirconia,” Powder Metallurgy, vol. 62, no. 3, pp. 196–204, 2019.

S. Cano, J. Gonzalez-Gutierrez, J. Sapkota, M. Spoerk, F. Arbeiter, S. Schuschnigg, “Additive manufacturing of zirconia parts by fused filament fabrication and solvent debinding: Selection of binder formulation,” Additive Manufacturing, vol. 26, pp. 117–128, 2019.

W. Lengauer, I. Duretek, M. Fürst, V. Schwarz, J. Gonzalez-Gutierrez, S. Schuschnigg, “Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components,” International Journal of Refractory Metals and Hard Materials, vol. 82, pp. 141–149, 2019.

C. Kukla, J. Gonzalez-gutierrez, S. Cano, S. Hampel, “Fused Filament Fabrication (FFF) of PIM Feedstocks,” in VI Congreso Nacional y I Iberoamericano de Pulvimetalurgia, 2017.

J. Gonzalez-Gutierrez, F. Arbeiter, T. Schlauf, C. Kukla, C. Holzer, “Tensile properties of sintered 17-4PH stainless steel fabricated by material extrusion additive manufacturing,” Materials Letters, vol. 248, pp. 165–168, 2019.

J. Gonzalez-Gutierrez, D. Godec, C. Kukla, T. Schlauf, C. Burkhardt, C. Holzer, “Shaping , Debinding and Sintering of Steel Components Via Fused Filament Fabrication,” in 16th International Scientific Conference on Production Engineering , 2017.

J. Abel, U. Scheithauer, T. Janics, S. Hampel, S. Cano, A. Müller-Köhn, “Fused filament fabrication (FFF) of metal-ceramic components,” Journal of Visualized Experiments, vol. 2019, no. 143, pp. 1–13, 2019.

R. K. Enneti, S. J. Park, R. M. German, S. V. Atre, “Review: Thermal debinding process in particulate materials processing,” Materials and Manufacturing Processes, vol. 27, no. 2, pp. 103–118, 2012.

R. M. German, P. Suri, S. J. Park, “Review: Liquid phase sintering,” Journal of Materials Science, vol. 44, no. 1, pp. 1–39, 2009.

R. M. German, “Computer model for the sintering densification of injected molded M2 tool Steel,” in International Journal of Powder Metallurgy, pp. 57–67, 1999.

R. M. German, “Densification of prealloyed tool steel powders: sintering model,” in International Journal of Powder Metallurgy, pp. 49–61, 1986.

A. Chniouel, Etude de l’élaboration de l’acier inoxydable 316L par fusion laser sélective sur lit de poudre : influence des paramètres du procédé, des caractéristiques de la poudre, et des traitements thermiques sur la microstructure et les propriétés mécaniques, p. 145, 2019.

E. Jelis, M. Clemente, S. Kerwien, N. M. Ravindra, M. R. Hespos, “Metallurgical and Mechanical Evaluation of 4340 Steel Produced by Direct Metal Laser Sintering,” Jom, vol. 67, no. 3, pp. 582–589, 2015.

R. K. Enneti, V. P. Onbattuvelli, S. V. Atre, “Powder binder formulation and compound manufacture in metal injection molding (MIM),” in Handbook of Metal Injection Molding, pp. 64–92, 2012.

M. Spoerk, C. Holzer, J. Gonzalez-Gutierrez, “Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage,” Journal of Applied Polymer Science, vol. 137, no. 12, e48545, 2020.

M. Spoerk, J. Gonzalez-Gutierrez, J. Sapkota, S. Schuschnigg, C. Holzer, “Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication,” Plastics, Rubber and Composites, vol. 47, no. 1, pp. 17–24, 2018.

N. S. Myers, D. F. Heaney, “Metal injection molding (MIM) of high-speed tool steels,” in Handbook of Metal Injection Molding, pp. 516–525, 2012.

H. K. D. H. Bhadeshia, Bainite in Steels Theory and Practice, 2019.

Y. Thompson, J. Gonzalez-Gutierrez, C. Kukla, P. Felfer, “Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel,” Additive Manufacturing, vol. 30, e100861, 2019.

K. Rane, S. Cataldo, P. Parenti, L. Sbaglia, V. Mussi, M. Annon, “Rapid production of hollow SS316 profiles by extrusion based additive manufacturing,” AIP Conference Proceedings, vol. 1960, e140014, 2018.

Citado por: