Skip to main navigation menu Skip to main content Skip to site footer

Solid-State and Super Solidus Liquid Phase Sintering of 4340 Steel SLM Powders Shaped by Fused Filament Fabrication

Abstract

4340 steel powders were processed with an additive manufacturing process using the FFF (Fused Filament Fabrication) technique. A composite filament was developed to print samples and study the effect of the bed and nozzle temperatures on its physical and microstructural properties. The printed samples were debinded and sintered by: Solid State (SS) at 1300 °C or SLPS (Supersolidus Liquid Phase Sintering) at 1420 °C. Metallography and scanning electron microscopy (SEM) identified the microstructure and phases. The hardness of the sintered samples was measured with the Vickers method. The SLPS process contributes to better densification and volume contraction; however, it promotes geometrical distortion of the samples compared to the SS samples. The microstructure of the sintered samples consists of ferrite situated in the original austenite grain and bainite. The sintering mechanism significantly influenced the hardness of the samples. Finally, a part was designed, printed, debinded, and sintered with the aim of studying the maximum inclination angle, the minimum vertical and horizontal holes, and the minimum vertical layer thickness, which can be obtained through the whole process.

Keywords

Additive manufacturing, 4340 steel, debinding, sintering, characterization, fused filament fabrication

PDF

Author Biography

Andres-Fernando Gil-Plazas

Roles: Conceptualization, Research, Methodology, Writing - Original draft, Writing – Review & editing.

Julián-David Rubiano-Buitrago

Roles: Conceptualization, Research, Methodology, Writing - Original draft, Writing – Review & editing.

Luis-Alejandro Boyacá-Mendivelso

Roles: Conceptualization, Visualization.

Liz-Karen Herrera-Quintero

Roles: Conceptualization, Supervision.


References

  1. H. E. Quinlan, T. Hasan, J. Jaddou, A. J. Hart, “Industrial and Consumer Uses of Additive Manufacturing: A Discussion of Capabilities, Trajectories, and Challenges,” Journal of Industrial Ecology, vol. 21, pp. S15–S20, 2017. https://doi.org/10.1111/jiec.12609 DOI: https://doi.org/10.1111/jiec.12609
  2. C. R. Deckard, United States Patent, no. 19, p. 14, 1997
  3. G. H. Loh, E. Pei, J. Gonzalez-Gutierrez, M. Monzón, “An overview of material extrusion troubleshooting,” Applied Sciences (Switzerland), vol. 10, no. 14, e4776, 2020. https://doi.org/10.3390/app10144776 DOI: https://doi.org/10.3390/app10144776
  4. M. K. Agarwala, R. Van Weeren, A. Bandyopadhyay, A. Safari, S. C. Danforth, W. R. Priedeman, “Filament Feed Materials for Fused Deposition Processing of Ceramics and Metals,” in Proceedings ofthe Solid Freeform Fabrication Symposium, pp. 451–458, 1996. https://doi.org/10.1109/isaf.1996.598197 DOI: https://doi.org/10.1109/ISAF.1996.598197
  5. J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, C. Holzer, “Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives,” Materials, vol. 11, no. 5, e840, 2018. https://doi.org/10.3390/ma11050840 DOI: https://doi.org/10.3390/ma11050840
  6. A. Levy, A. Miriyev, A. Elliott, S. S. Babu, N. Frage, “Additive manufacturing of complex-shaped graded TiC/steel composites,” Materials and Design, vol. 118, pp. 198–203, 2017. https://doi.org/10.1016/j.matdes.2017.01.024 DOI: https://doi.org/10.1016/j.matdes.2017.01.024
  7. P. Singh, V. K. Balla, S. V. Atre, R. M. German, K. H. Kate, “Factors affecting properties of Ti-6Al-4V alloy additive manufactured by metal fused filament fabrication,” Powder Technology, vol. 386, pp. 9–19, 2021. https://doi.org/10.1016/j.powtec.2021.03.026 DOI: https://doi.org/10.1016/j.powtec.2021.03.026
  8. Y. Zhang, L. Poli, E. Garratt, S. Foster, A. Roch, “Utilizing Fused Filament Fabrication for Printing Iron Cores for Electrical Devices,” 3D Printing and Additive Manufacturing, vol. 7, no. 6, pp. 279–287, 2020. https://doi.org/10.1089/3dp.2020.0136 DOI: https://doi.org/10.1089/3dp.2020.0136
  9. M. Vaezi, P. Drescher, H. Seitz, “Beamless Metal Additive Manufacturing,” Materials, vol. 13, no. 4, e922, 2020. https://doi.org/10.3390/ma13040922 DOI: https://doi.org/10.3390/ma13040922
  10. M. Galati, P. Minetola, “Analysis of density, roughness, and accuracy of the atomic diffusion additive manufacturing (ADAM) process for metal parts,” Materials, vol. 12, no. 24, e4122, 2019. https://doi.org/10.3390/ma12244122 DOI: https://doi.org/10.3390/ma12244122
  11. C. Kukla, S. Cano, D. Kaylani, S. Schuschnigg, C. Holzer, J. Gonzalez-Gutierrez, “Debinding behaviour of feedstock for material extrusion additive manufacturing of zirconia,” Powder Metallurgy, vol. 62, no. 3, pp. 196–204, 2019. https://doi.org/10.1080/00325899.2019.1616139 DOI: https://doi.org/10.1080/00325899.2019.1616139
  12. S. Cano, J. Gonzalez-Gutierrez, J. Sapkota, M. Spoerk, F. Arbeiter, S. Schuschnigg, “Additive manufacturing of zirconia parts by fused filament fabrication and solvent debinding: Selection of binder formulation,” Additive Manufacturing, vol. 26, pp. 117–128, 2019. https://doi.org/10.1016/j.addma.2019.01.001 DOI: https://doi.org/10.1016/j.addma.2019.01.001
  13. W. Lengauer, I. Duretek, M. Fürst, V. Schwarz, J. Gonzalez-Gutierrez, S. Schuschnigg, “Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components,” International Journal of Refractory Metals and Hard Materials, vol. 82, pp. 141–149, 2019. https://doi.org/10.1016/j.ijrmhm.2019.04.011 DOI: https://doi.org/10.1016/j.ijrmhm.2019.04.011
  14. C. Kukla, J. Gonzalez-gutierrez, S. Cano, S. Hampel, “Fused Filament Fabrication (FFF) of PIM Feedstocks,” in VI Congreso Nacional y I Iberoamericano de Pulvimetalurgia, 2017.
  15. J. Gonzalez-Gutierrez, F. Arbeiter, T. Schlauf, C. Kukla, C. Holzer, “Tensile properties of sintered 17-4PH stainless steel fabricated by material extrusion additive manufacturing,” Materials Letters, vol. 248, pp. 165–168, 2019. https://doi.org/10.1016/j.matlet.2019.04.024 DOI: https://doi.org/10.1016/j.matlet.2019.04.024
  16. J. Gonzalez-Gutierrez, D. Godec, C. Kukla, T. Schlauf, C. Burkhardt, C. Holzer, “Shaping , Debinding and Sintering of Steel Components Via Fused Filament Fabrication,” in 16th International Scientific Conference on Production Engineering , 2017.
  17. J. Abel, U. Scheithauer, T. Janics, S. Hampel, S. Cano, A. Müller-Köhn, “Fused filament fabrication (FFF) of metal-ceramic components,” Journal of Visualized Experiments, vol. 2019, no. 143, pp. 1–13, 2019. https://doi.org/10.3791/57693 DOI: https://doi.org/10.3791/57693
  18. R. K. Enneti, S. J. Park, R. M. German, S. V. Atre, “Review: Thermal debinding process in particulate materials processing,” Materials and Manufacturing Processes, vol. 27, no. 2, pp. 103–118, 2012. https://doi.org/10.1080/10426914.2011.560233 DOI: https://doi.org/10.1080/10426914.2011.560233
  19. R. M. German, P. Suri, S. J. Park, “Review: Liquid phase sintering,” Journal of Materials Science, vol. 44, no. 1, pp. 1–39, 2009. DOI: https://doi.org/10.1007/s10853-008-3008-0
  20. R. M. German, “Computer model for the sintering densification of injected molded M2 tool Steel,” in International Journal of Powder Metallurgy, pp. 57–67, 1999.
  21. R. M. German, “Densification of prealloyed tool steel powders: sintering model,” in International Journal of Powder Metallurgy, pp. 49–61, 1986.
  22. A. Chniouel, Etude de l’élaboration de l’acier inoxydable 316L par fusion laser sélective sur lit de poudre : influence des paramètres du procédé, des caractéristiques de la poudre, et des traitements thermiques sur la microstructure et les propriétés mécaniques, p. 145, 2019.
  23. E. Jelis, M. Clemente, S. Kerwien, N. M. Ravindra, M. R. Hespos, “Metallurgical and Mechanical Evaluation of 4340 Steel Produced by Direct Metal Laser Sintering,” Jom, vol. 67, no. 3, pp. 582–589, 2015. https://doi.org/10.1007/s11837-014-1273-8 DOI: https://doi.org/10.1007/s11837-014-1273-8
  24. R. K. Enneti, V. P. Onbattuvelli, S. V. Atre, “Powder binder formulation and compound manufacture in metal injection molding (MIM),” in Handbook of Metal Injection Molding, pp. 64–92, 2012. https://doi.org/10.1533/9780857096234.1.64 DOI: https://doi.org/10.1533/9780857096234.1.64
  25. M. Spoerk, C. Holzer, J. Gonzalez-Gutierrez, “Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage,” Journal of Applied Polymer Science, vol. 137, no. 12, e48545, 2020. https://doi.org/10.1002/app.48545 DOI: https://doi.org/10.1002/app.48545
  26. M. Spoerk, J. Gonzalez-Gutierrez, J. Sapkota, S. Schuschnigg, C. Holzer, “Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication,” Plastics, Rubber and Composites, vol. 47, no. 1, pp. 17–24, 2018. https://doi.org/10.1080/14658011.2017.1399531 DOI: https://doi.org/10.1080/14658011.2017.1399531
  27. N. S. Myers, D. F. Heaney, “Metal injection molding (MIM) of high-speed tool steels,” in Handbook of Metal Injection Molding, pp. 516–525, 2012. https://doi.org/10.1533/9780857096234.4.516 DOI: https://doi.org/10.1533/9780857096234.4.516
  28. H. K. D. H. Bhadeshia, Bainite in Steels Theory and Practice, 2019. DOI: https://doi.org/10.1201/9781315096674
  29. Y. Thompson, J. Gonzalez-Gutierrez, C. Kukla, P. Felfer, “Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel,” Additive Manufacturing, vol. 30, e100861, 2019. https://doi.org/10.1016/j.addma.2019.100861 DOI: https://doi.org/10.1016/j.addma.2019.100861
  30. K. Rane, S. Cataldo, P. Parenti, L. Sbaglia, V. Mussi, M. Annon, “Rapid production of hollow SS316 profiles by extrusion based additive manufacturing,” AIP Conference Proceedings, vol. 1960, e140014, 2018. https://doi.org/10.1063/1.5035006 DOI: https://doi.org/10.1063/1.5035006

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.