Skip to main navigation menu Skip to main content Skip to site footer

Wear Behavior of Bioactive Glass Coatings Deposited by Thermal Spraying

Abstract

In this work, bioactive glass coatings were fabricated by plasma thermal spraying and oxyacetylene flame techniques from 2 different bioactive glass powders with 0 and 2% molar MgO. The metal substrates used were Ti6Al4V alloy and AISI 316L steel. The tribological behavior of the coatings was evaluated by the ball-on-disc method in the presence of simulated biological fluid (SBF), and the results were correlated with their mechanical behavior, obtaining values of hardness (between 4.84 and 5.18 GPa) and fracture toughness (between 5.25 and 6.62 MPa.m1/2). The results show that fracture toughness has a slightly higher effect than hardness on the wear behavior of the coatings under study.

Keywords

Thin films, ceramics, plasma thermal projection, thermal projection by flame

PDF XML

Author Biography

Mónica-Johanna Monsalve-Arias

Rooles: Investigation, Formal analysis, Methodology, Writing-original draft, Writing-review and editing.

Oscar-Fabián Higuera-Cobos

Roles: Investigation, Formal analysis, Methodology, Writing-original draft, Writing-review and editing.

Helèn Ageorges

Roles: Supervision, Methodology, Validation.

Fabio Vargas-Galvis

Roles: Supervision, Methodology, Validation.

María-Esperanza López-Gómez

Roles: Supervision, Methodology, Validation.


References

  1. M. Amaral, C. S. Abreu, F. J. Oliveira, J. R. Gomes, R. F. Silva, “Biotribological performance of NCD coated Si3N4–bioglass composites,” Diamond and Related Materials, vol. 16, no. 4, pp. 790-795, 2007. https://doi.org/10.1016/j.diamond.2006.12.045 DOI: https://doi.org/10.1016/j.diamond.2006.12.045
  2. L. Hench, J. Pantano, P. Buscemi, D. Greenspan, “Analysis of bioglass fixation of hip prostheses,” Journal of Biomedical Materials Research, vol. 11, no. 2, pp. 267-282, 1977. DOI: https://doi.org/10.1002/jbm.820110211
  3. L. G. de Oliveira et al., “Bioglass Ti coatings: Influence of thermal annealing on the evolution of calcium phosphate formation, phase and morphology,” Journal of Non-Crystalline Solids, vol. 567, e120926, 2021. https://doi.org/10.1016/j.jnoncrysol.2021.120926 DOI: https://doi.org/10.1016/j.jnoncrysol.2021.120926
  4. S. Bano, I. Ahmed, D. M. Grant, A. Nommeots-Nomm, T. Hussain, “Effect of processing on microstructure, mechanical properties and dissolution behaviour in SBF of Bioglass (45S5) coatings deposited by Suspension High Velocity Oxy Fuel (SHVOF) thermal spray,” Surface and Coatings Technology, vol. 372, pp. 229-238, 2019. https://doi.org/10.1016/j.surfcoat.2019.05.038 DOI: https://doi.org/10.1016/j.surfcoat.2019.05.038
  5. J. Henao, C. Poblano-Salas, M. Monsalve, J. Corona-Castuera, O. Barceinas-Sanchez, “Bio-active glass coatings manufactured by thermal spray: a status report,” Journal of Materials Research and Technology, vol. 8, no. 5, pp. 4965-4984, 2019. https://doi.org/10.1016/j.jmrt.2019.07.011 DOI: https://doi.org/10.1016/j.jmrt.2019.07.011
  6. Z. Li, N. W. Khun, X.-Z. Tang, E. Liu, K. A. Khor, “Mechanical, tribological and biological properties of novel 45S5 Bioglass® composites reinforced with in situ reduced graphene oxide,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 65, pp. 77-89, 2017. https://doi.org/10.1016/j.jmbbm.2016.08.007 DOI: https://doi.org/10.1016/j.jmbbm.2016.08.007
  7. M. Latorre, Recubrimientos biocompatibles obtenidos por proyección térmica y estudio in vitro de la función osteoblástica, Master Thesis, Universitat de Barcelona, Barcelona, 2007.
  8. J. Cai, C. Miyata, X. Huang, Q. Yang, “Microstructure, bioactivity and wear resistance of sintered composite Co-Cr-Mo/Bioglass® for medical implant applications,” International Journal of Surface Science and Engineering, vol. 8, no. 2-3, pp. 264-281, 2014. DOI: https://doi.org/10.1504/IJSURFSE.2014.060500
  9. Y. Chen, X. Wang, L. Xu, Z. Liu, K. D. Woo, “Tribological behavior study on Ti–Nb–Sn/hydroxyapatite composites in simulated body fluid solution,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 10, pp. 97-107, 2012. https://doi.org/10.1016/j.jmbbm.2012.02.017 DOI: https://doi.org/10.1016/j.jmbbm.2012.02.017
  10. E04 Committee, Guide for Metallographic Preparation of Thermal Sprayed Coatings, ASTM International, 2014. https://doi.org/10.1520/E1920-03R14 DOI: https://doi.org/10.1520/E1920-03R14
  11. E04 Committee, Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings, ASTM International, 2014. https://doi.org/10.1520/E2109-01R14 DOI: https://doi.org/10.1520/E2109-01R14
  12. C28 Committee, Test Method for Vickers Indentation Hardness of Advanced Ceramics, ASTM International, 2019. https://doi.org/10.1520/C1327-15R19 DOI: https://doi.org/10.1520/C1327-15R19
  13. F. Sergejev, M. Antonov, “Comparative study on indentation fracture toughness measurements of cemented carbides,” Proceedings of the Estonian Academy of Sciences and Engineering, vol. 12, no. 4, pp. 388-398, 2006. https://doi.org/10.3176/eng.2006.4.07 DOI: https://doi.org/10.3176/eng.2006.4.07
  14. T. Kokubo, H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?,” Biomaterials, vol. 27, no. 15, pp. 2907-2915, 2006. https://doi.org/10.1016/j.biomaterials.2006.01.017 DOI: https://doi.org/10.1016/j.biomaterials.2006.01.017
  15. F. Vargas, Elaboration des couches ceramiques epaisses a structures micrometriques et nanometriques par projection thermiques pour des applications tribologiques, Doctoral Thesis, Université de Limoges, Limoges, Francia, 2010.
  16. C. Cano Valencia, Recubrimientos cerámicos con aplicación en barreras térmicas y ambientales, Doctoral Thesis, Universidad Autónoma de Madrid, Madrid, 2008.
  17. J. Park, A. Ozturk, “Effect of TiO2 addition on the crystallization and tribological properties of MgO–CaO–SiO2–P2O5–F glasses,” Thermochimica Acta, vol. 470, no. 1, pp. 60-66, 2008. https://doi.org/10.1016/j.tca.2008.01.018 DOI: https://doi.org/10.1016/j.tca.2008.01.018
  18. D. Franco, H. Ageorges, E. López, F. Vargas, “Tribological performance at high temperatures of alumina coatings applied by plasma spraying process onto a refractory material,” Surface and Coatings Technology, vol. 371, pp. 276-286, 2019. https://doi.org/10.1016/j.surfcoat.2019.04.058 DOI: https://doi.org/10.1016/j.surfcoat.2019.04.058
  19. T. E. Fischer, Z. Zhu, H. Kim, D. S. Shin, “Genesis and role of wear debris in sliding wear of ceramics,” Wear, vol. 245, no. 1, pp. 53-60, 2000. https://doi.org/10.1016/S0043-1648(00)00465-8 DOI: https://doi.org/10.1016/S0043-1648(00)00465-8
  20. G. W. Stachowiak, A. W. Batchelor, “Wear of Non-Metallic Materials,” in Tribology Series, vol. 24, pp. 715-771, 1993. https://doi.org/10.1016/S0167-8922(08)70590-X DOI: https://doi.org/10.1016/S0167-8922(08)70590-X
  21. A. Kumar, K. Biswas, B. Basu, “Fretting wear behaviour of hydroxyapatite–titanium composites in simulated body fluid, supplemented with 5 g l-1 bovine serum albumin,” Journal of Physics D: Applied Physics, vol. 46, no. 40, e404004, 2013. https://doi.org/10.1088/0022-3727/46/40/404004 DOI: https://doi.org/10.1088/0022-3727/46/40/404004
  22. J. Park, A. Ozturk, “Tribological properties of MgO–CaO–SiO2–P2O5–F-based glass-ceramic for dental applications,” Materials Letters, vol. 61, no. 8, pp. 1916-1921, 2007. https://doi.org/10.1016/j.matlet.2006.07.155 DOI: https://doi.org/10.1016/j.matlet.2006.07.155

Downloads

Download data is not yet available.

Most read articles by the same author(s)