Development of a PID Controller by Tuning Fuzzy Applied to a Rotational System (Inverted Pendulum)

Main Article Content


Oscar Eduardo Gualdrón-Guerrero
Kelvin de Jesús Beleño-Sáenz
Danilo Alfonso López


The inverted pendulum system has arised a great interest in the control and academia areas, this system modeling presents many difficulties associated with the control problems in the real world. This paper presents a different way to develop a control strategy for the system in question, based on the design and implementation of the rotational pendulum system, then employing the same modeling strategies by using the system identification methods, based on the artificial intelligence neural networks (N-FIR), to finally taking the tuning fuzzy control step, for the different physical conditions caused on the pendulum (change in length and/or mass), which are validated, with good results on the real system developed.


Article Details


All articles included in the Revista Facultad de Ingeniería are published under the Creative Commons (BY) license.

Authors must complete, sign, and submit the Review and Publication Authorization Form of the manuscript provided by the Journal; this form should contain all the originality and copyright information of the manuscript.

The authors who publish in this Journal accept the following conditions:

a. The authors retain the copyright and transfer the right of the first publication to the journal, with the work registered under the Creative Commons attribution license, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this Journal.

b. Authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly indicate that the work It was first published in this Journal.

c. Authors are allowed and recommended to publish their work on the Internet (for example on institutional or personal pages) before and during the process.
review and publication, as it can lead to productive exchanges and a greater and faster dissemination of published work.

d. The Journal authorizes the total or partial reproduction of the content of the publication, as long as the source is cited, that is, the name of the Journal, name of the author (s), year, volume, publication number and pages of the article.

e. The ideas and statements issued by the authors are their responsibility and in no case bind the Journal.


[1] R. M. Brisilla, V. Sankaranarayanan “Nonlinear control of mobile inverted pendulum”. Robotics and Autonomous Systems, Vol. 70, pp. 145-155, August 2015.

[2] F. Dai, X. Gao, S. Jiang, W. Guo, “A twowheeled inverted pendulum robot with friction compensation”, Mechatronics, Available online 4 July 2015.

[3] M. Olivares, P. Albertos, “Linear control of the flywheel inverted pendulum”, ISA Transactions, Vol. 53, pp. 1396-1403, 2014.

[4] Z. Sun, N. Wang, Y. Bi, “Type-1/type-2 fuzzy logic systems optimization with RNA genetic algorithm for double inverted pendulum”, Applied Mathematical Modelling, Vol. 39, pp. 70-85, January 2015.

[5] A. M. El-Nagar, M. El-Bardini, N. M. El-Rabaie, “Intelligent control for nonlinear inverted pendulum based on interval type-2 fuzzy PD controller”, Alexandria Engineering Journal, Vol. 53, pp. 23-32, 2014.

[6] O. Gualdrón, C. Peña, C. Maldonado, “Identificación automática de cilindros de almacenamiento de gas utilizando redes neuronales tipo hop field”, Revista Ingeniería de la Universidad Industrial de Santander, Vol. 11-1, pp. 101-109, 2012.

[7] A. Guerrero, O. Gualdrón, “Identificación de un modelo dinámico del generador de vapor de la caldera en la planta Termotasajero Colgener”, Revista Colombiana de Tecnologías de Avanzada, Vol. 21, pp. 52-59, 2013.

[8] M. Romero Ugalde, J.C Carmona, J. Reyes, V. Alvarado, J. Mantilla, “Computational cost improvement of neural network models in black box nonlinear system identification”, Neurocomputing, Vol. 166, pp. 96-108, 2015.

[9] E. Gómez, “Aplicación del modelo neurodifuso ANFIS vs. Redes Neuronales, al problema predictivo de caudales medios mensuales del río Bogotá en Villapinzón”, Revista Tecnura, Vol. 14, pp. 18-29, 2010.

[10] P. Szymczyk,“Z-transform artificial neural networks”, Neurocomputing, Vol. 168, pp. 1207-1210, 2015.

[11] J. S. Almeida, “Predictive non-linear modeling of complex data by artificial neural networks”, Current Opinion in Biotechnology, Vol. 13, pp. 72-76, February 2002.

[12] E. Caicedo, J.A. López, M.A. Muñoz, Control Inteligente. Editorial Universidad del Valle,2009.

[13] Z. Sun, R. Xing, C. Zhao, W. Huang, “Fuzzy auto-tuning PID control of multiple joint robot driven by ultrasonic motors”, Ultrasonics, Vol. 46, pp. 303-312, 2007.

[14] I. Anastasios, A. Dounis, P. Kofinas, G. Papadakis, C. Alafodimos, “A direct adaptive neural control for maximum power point tracking of photovoltaic system”, Solar Energy, Vol. 115, pp. 145-165, 2015.

[15] X. Ruan, M. Ding, D. Gong, J. Qiao, “Online adaptive control for inverted pendulum balancing based on feedback-error-learning”, Neurocomputing, Vol. 70, pp. 770-776, 2007.


Download data is not yet available.