Skip to main navigation menu Skip to main content Skip to site footer

Computational simulation of concentration by osmotic evaporation of passion fruit juice (Passiflora edullis)

Abstract

This study aimed at implementing a comprehensive strategy for the multiphysics simulation of the osmotic evaporation process applied in the concentration of passion fruit juice. The phenomena of mass and momentum transfer were analyzed in Comsol® and Matlab®, using a two-dimensional axial geometry as a simplification of the membrane module. Computer simulations were validated through comparisons with experimental data obtained from osmotic evaporation of passion fruit juice previously ultrafiltrated. The juice was concentrated to 52.25 ± 0.36 (°Brix) of soluble solids, reaching a final flux of 0.63 (kg/m2h) after 6 hours. The concentrate retained the organoleptic and physicochemical quality characteristics of the original juice when it was reconstituted in water. The models and simulations developed can be used to describe, analyze, and efficiently improve the osmotic evaporation process applied to the concentration of juices.

Keywords

computational simulation, hydrophobic membrane, mass transfer, passion fruit

PDF XML

References

  1. W. Kujawski, A. Sobolewska, K. Jarzynka, C. Guell, M. Ferrando, and J. Warczok, “Application of osmotic membrane distillation process in red grape juice concentration,” Journal of Food Engineering, vol. 116 (4), pp. 801-808, Jun. 2013. DOI: http://doi.org/10.1016/j.jfoodeng.2013.01.033. DOI: https://doi.org/10.1016/j.jfoodeng.2013.01.033
  2. A. L. R. Souza, M. M. Pagani, M. Dornier, F. S. Gomes, R. V. Tonon, and L. M. C. Cabral, “Concentration of camu–camu juice by the coupling of reverse osmosis and osmotic evaporation processes,” Journal of Food Engineering, vol. 119 (1), pp. 7-12, Nov. 2013. DOI: http://doi.org/10.1016/j.jfoodeng.2013.05.004. DOI: https://doi.org/10.1016/j.jfoodeng.2013.05.004
  3. F. L. Forero, C. A. P. Vélez, and A. P. A. Sandoval, “Ultrafiltration and osmotic evaporation applied to the concentration of cholupa (passiflora maliformis) juice,” Ingenieria e Investigacion, vol. 33, pp. 35-40, 2013.
  4. F. Forero Longas, A. P. Pulido Díaz, and S. A. Cabrera Navarro, “Modelación y simulación computacional del proceso de evaporación osmótica,” Tecnura, vol. 20 (49), pp. 29-44, Sep. 2016. DOI: http://doi.org/10.14483/udistrital.jour.tecnura.2016.3.a02. DOI: https://doi.org/10.14483/udistrital.jour.tecnura.2016.3.a02
  5. R. C. Castro-Domingues, A. Araujo-Ramos, V. Luiz-Cardoso, and M. H. Miranda-Reis, “Microfiltration of passion fruit juice using hollow fibre membranes and evaluation of fouling mechanisms,” Journal of Food Engineering, vol. 121, pp. 73-79, Jan. 2014. DOI: http://doi.org/10.1016/j.jfoodeng.2013.07.037. DOI: https://doi.org/10.1016/j.jfoodeng.2013.07.037
  6. D. M. Warsinger, J. Swaminathan, E. Guillen-Burrieza, H. A. Arafat, and J. H. Lienhard, “Scaling and fouling in membrane distillation for desalination applications: A review,” Desalination, vol. 356, pp. 294-313, Jan. 2015. DOI: http://doi.org/10.1016/j.desal.2014.06.031. DOI: https://doi.org/10.1016/j.desal.2014.06.031
  7. A. P. Pulido-Díaz, F. Forero-Longas, and S. A. Cabrera-Navarro, “Evaporación osmótica: fundamentos y aplicaciones en la concentración de jugos de fruta,” Biotecnología en el Sector Agropecuario y Agroindustrial, vol. 14 (2), pp. 135-144, 2016. DOI: http://doi.org/10.18684/BSAA(14)135-144. DOI: https://doi.org/10.18684/BSAA(14)135-144
  8. C. Zambra, J. Romero L. Pino, A. Saavedra, and J. Sanchez, “Concentration of cranberry juice by osmotic distillation process,” Journal of Food Engineering, vol. 144, pp. 58-65, Jan. 2015. DOI: http://doi.org/10.1016/j.jfoodeng.2014.07.009. DOI: https://doi.org/10.1016/j.jfoodeng.2014.07.009
  9. M. A. E.-R. Abu-Zeid, Y Zhang, H. Dong, L. Zhang, H.-L. Zhen, and L. Hou, “A comprehensive review of vacuum membrane distillation technique,” Desalination, vol. 356, pp. 1-14, Jan. 2015. DOI: http://doi.org/10.1016/j.desal.2014.10.033. DOI: https://doi.org/10.1016/j.desal.2014.10.033
  10. F. Forero Longas and C. A. Velez, “Analysing transfer phenomena in osmotic evaporation,” Ingenieria e Investigacion, vol. 31, pp. 40-49, 2011.
  11. F. Forero Longas and C. A. Vélez, “Optimization of the concentration by osmotic evaporation of passion fruit juice (Passifora edullis),” DYNA (Colombia), vol. 80, pp. 90-98, 2013.
  12. B. Chen, Z. Gao, W. Jin, and S. Zheng, “Analytical mass transfer solution of longitudinal laminar flow of Happel’s free surface model,” International Journal of Heat and Mass Transfer, vol. 54 (17-18), pp. 4000-4008, Aug. 2011. DOI: http://doi.org/10.1016/j.ijheatmasstransfer.2011.04.025. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.025
  13. F. Vaillant, P. Millan, G. O’Brien, M. Dornier, M. Decloux, and M. Reynes, “Crossflow microfiltration of passion fruit juice after partial enzymatic liquefaction,” Journal of Food Engineering, vol. 42 (4), pp. 215-224, Dec. 1999. DOI: http://doi.org/10.1016/S0260-8774(99)00124-7. DOI: https://doi.org/10.1016/S0260-8774(99)00124-7
  14. A. V. Bui, H. M. Nguyen, and M. Joachim, “Prediction of water activity of glucose and calcium chloride solutions,” Journal of Food Engineering, vol. 57 (3), pp. 243-248, May. 2003. DOI: http://doi.org/10.1016/S0260-8774(02)00304-7. DOI: https://doi.org/10.1016/S0260-8774(02)00304-7
  15. A. V. Bui and M. H. Nguyen, “Prediction of viscosity of glucose and calcium chloride solutions,” Journal of Food Engineering, vol. 62 (4), pp. 345-349, May. 2004. DOI: http://doi.org/10.1016/S0260-8774(03)00249-8. DOI: https://doi.org/10.1016/S0260-8774(03)00249-8
  16. G. J. Maximo, A. J. A. Meirelles, and E. A. C. Batista, “Boiling point of aqueous d-glucose and d-fructose solutions: Experimental determination and modeling with groupcontribution method,” Fluid Phase Equilibria, vol. 299 (1), pp. 32-41, Dec. 2010. DOI: http://doi.org/10.1016/j.fluid.2010.08.018. DOI: https://doi.org/10.1016/j.fluid.2010.08.018
  17. A. Wahab and S. Mahiuddin, “Isentropic Compressibility and Viscosity of Aqueous and Methanolic Calcium Chloride Solutions,” Journal of Chemical & Engineering Data, vol. 46 (6), pp. 1457-1463, Nov. 2001. DOI: http://doi.org/10.1021/je010072l. DOI: https://doi.org/10.1021/je010072l
  18. C. Hongvaleerat, L. M. C. Cabral, M. Dornier, M. Reynes, and S. Ningsanond, “Concentration of pineapple juice by osmotic evaporation,” Journal of Food Engineering, vol. 88 (4), pp. 548-552, Oct. 2008. DOI: http://doi.org/10.1016/j.jfoodeng.2008.03.017. DOI: https://doi.org/10.1016/j.jfoodeng.2008.03.017
  19. F. Tasselli, A. Cassano, and E. Drioli, “Ultrafiltration of kiwifruit juice using modified poly(ether ether ketone) hollow fibre membranes,” Separation and Purification Technology, vol. 57 (1), pp. 94-102, Oct. 2007. DOI: http://doi.org/10.1016/j.seppur.2007.03.007. DOI: https://doi.org/10.1016/j.seppur.2007.03.007
  20. B. Ravindra Babu, N. K. Rastogi, and K. S. M. S. Raghavarao, “Concentration and temperature polarization effects during osmotic membrane distillation,” Journal of Membrane Science, vol. 322 (1), pp. 146-153, Sep. 2008. DOI: http://doi.org/10.1016/j.memsci.2008.05.041. DOI: https://doi.org/10.1016/j.memsci.2008.05.041
  21. S. Zhao, P. H. M. Feron, Z. Xie, J. Zhang, and M. Hoang, “Condensation studies in membrane evaporation and sweeping gas membrane distillation,” Journal of Membrane Science, vol. 462, pp. 9-16, Jul. 2014. DOI: http://doi.org/10.1016/j.memsci.2014.03.028. DOI: https://doi.org/10.1016/j.memsci.2014.03.028
  22. H. Yu, X. Yang, R. Wang, and A. G. Fane, “Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow,” Journal of Membrane Science, vol. 384 (1-2), pp. 107-116, Nov. 2011. DOI: http://doi.org/10.1016/j.memsci.2011.09.011. DOI: https://doi.org/10.1016/j.memsci.2011.09.011
  23. X. Yang, E. O. Fridjonsson, M. L. Johns, R. Wang, and A. G. Fane, “A non-invasive study of flow dynamics in membrane distillation hollow fiber modules using low-field nuclear magnetic resonance imaging (MRI),” Journal of Membrane Science, vol. 451, pp. 46-54, Feb. 2014. DOI: http://doi.org/10.1016/j.memsci.2013.09.015. DOI: https://doi.org/10.1016/j.memsci.2013.09.015
  24. Y. M. Manawi, M. A. M. M. Khraisheh, A. K. Fard, F. Benyahia, and S. Adham, “A predictive model for the assessment of the temperature polarization effect in direct contact membrane distillation desalination of high salinity feed,” Desalination, vol. 341, pp. 38-49, May. 2014. DOI: http://doi.org/10.1016/j.desal.2014.02.028. DOI: https://doi.org/10.1016/j.desal.2014.02.028
  25. R. Naim and A. F. Ismail, “Effect of fiber packing density on physical CO2 absorption performance in gas–liquid membrane contactor,” Separation and Purification Technology, vol. 115, pp. 152-157, Aug. 2013. DOI: http://doi.org/10.1016/j.seppur.2013.04.045. DOI: https://doi.org/10.1016/j.seppur.2013.04.045
  26. M. Rezakazemi, S. Shirazian, and S. N. Ashrafizadeh, “Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor,” Desalination, vol. 285, pp. 383-392, Jan. 2012. DOI: http://doi.org/10.1016/j.desal.2011.10.030. DOI: https://doi.org/10.1016/j.desal.2011.10.030

Downloads

Download data is not yet available.

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.