Structural analysis of the JBW (Na-J, barrer and white) zeotype obtained from kaolinite-rich clay

Main Article Content


Mario Alberto Macías-López, Ph. D.
Carlos Alberto Ríos-Reyes, Ph. D.
Oscar Mauricio Castellanos-Alarcón, Ph. D. (c)


The JBW zeolite was prepared from hydrogels under hydrothermal conditions by alkaline reaction, using NaOH as activating agent. The synthetic zeotype was studied by analytical techniques such as X-ray powder diffraction, scanning electron microscopy, Fourier transformed infrared spectroscopy and solid-state 29Si and 27Al Magic angle spinning nuclear magnetic resonance. Crystallographic data revealed that the JBW structure can be described by the orthorhombic space group Pna21, with unit cell parameters a=16.409(2) Å, b=14.966(2) Å and c=5.2154(5) Å.


Article Details


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles included in the Revista Facultad de Ingeniería are published under the Creative Commons (BY) license.

Authors must complete, sign, and submit the Review and Publication Authorization Form of the manuscript provided by the Journal; this form should contain all the originality and copyright information of the manuscript.

The authors who publish in this Journal accept the following conditions:

a. The authors retain the copyright and transfer the right of the first publication to the journal, with the work registered under the Creative Commons attribution license, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this Journal.

b. Authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly indicate that the work It was first published in this Journal.

c. Authors are allowed and recommended to publish their work on the Internet (for example on institutional or personal pages) before and during the process.
review and publication, as it can lead to productive exchanges and a greater and faster dissemination of published work.

d. The Journal authorizes the total or partial reproduction of the content of the publication, as long as the source is cited, that is, the name of the Journal, name of the author (s), year, volume, publication number and pages of the article.

e. The ideas and statements issued by the authors are their responsibility and in no case bind the Journal.


[1] T. Selvam, G.T.P. Mabande, M. Köstner, F. Scheffler, and W. Schwieger, “Hydrothermal transformation of porous glass beads into porous glass beads containing zeolite beta (BEA),” Stud. Surf.Sci. Catal., vol. 154, pp. 598–605, 2004. DOI:

[2] L. Heller-Kallai, and I. Lapides, “Reactions of kaolinites and metakaolinites with NaOH - comparison of different samples (Part 1),” Appl. Clay Sci., vol. 35 (1-2), pp. 99–107, Jan. 2007. DOI:

[3] C. A. Rios, C.D. Williams, and M.A. Fullen, “Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods,” Appl. Clay Sci., vol. 42 (3-4), pp. 446–454, Jan. 2009. DOI:

[4] Y. Zhao, B. Zhang, X. Zhang, J. Wang, J. Liu, and R. Chen, “Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions,” J. Hazard. Mater., vol. 178 (1-3), pp. 658–664, Jun. 2010. DOI:

[5] E. Z. Hegazy, I. H. Abd El Maksod, and R. M. M. Abo El Enin, “Preparation and characterization of Ti and V modified analcime from local kaolin,” Appl. Clay Sci., vol. 49 (3), pp. 149–155, Jul. 2010. DOI:

[6] M. M. Selim, and I.H.A.E. Maksod, “Hydrogenation of edible oil over zeolite prepared from local kaolin,” Micropor. Mesopor. Mater., vol. 74 (1-3), pp. 79–85, Sep. 2004. DOI:

[7] A. M. Healey, P.F. Henry, G.M. Johnson, M.T. Weller, T.M. Webster, and A.J. Genge, “The synthesis and characterisation of JBW-type zeolites. Part B: Sodium/rubidium aluminogermanate, Na2Rb[Al3Ge3O12]·H2O,” Micropor. Mesopor. Mater., vol. 37 (1-2), pp. 165-174, May. 2000. DOI:

[8] A. M. Healey, G. M. Johnson, and M. T. Weller, “The synthesis and characterization of JBW-type zeolites. Part A: Sodium/potassium aluminosilicate, Na2K[Al3Si3O12]·0.5H2O,” Micropor. Mesopor. Mater., vol. 37 (1-2), pp. 153–163, May. 2000. DOI:

[9] W.-J. Dong, W.-J. Li, K.-F. Yu, K. Krishna, L.-Z. Song, X.-F. Wang, Z.-C. Wang, M. O. Coppens, and S.-H. Feng, “Synthesis of silica nanotubes from kaolin clay,” Chem. Commun., vol. 11, pp. 1302–1303, May. 2003. DOI:

[10] Ch.-F. Wang, J.-Sh. Li, L.-J. Wang, and X.-Y. Sun, “Influence of NaOH concentrations on synthesis of pure-form zeolite. A from fly ash using two-stage method,” J. Hazard. Mater., vol. 155 (1-2), pp. 58–64, Jan. 2008. DOI:

[11] C. Baerlocher, and L. McCusker. “Database of Zeolite Structures,” 2013. Available on

[12] R. M. Barrer, and E.A.D. White, “The hydrothermal chemistry of silicates. Part II. Synthetic crystalline sodium aluminosilicates,” J. Chem. Soc., vol. 2, pp. 1561–1571, 1952. DOI:

[13] S. Hansen, and L. Fälth, “X-ray study of the nepheline hydrate I structure,” Zeolites, vol. 2 (3), pp. 162-166, Jul. 1982. DOI:

[14] D.-Ch. Lin, X.-W. Xu, F. Zuo, and Y.-C. Long, “Crystallization of JBW, CAN, SOD and ABW type zeolite from transformation of metakaolin,” Micropor. Mesopor. Mater., vol. 70 (1-3), pp. 63-70, May. 2004. DOI:

[15] C.A. Ríos. Synthesis of zeolites from geological materials and industrial wastes for potential application in environmental problems, Ph.D. Thesis. Wolverhampton, West Midlands: University of Wolverhampton, 2008.

[16] H. R. Mortaheb, A. Zolfaghari, B. Mokhtarani, M. H. Amini, and V. Mandanipour, “Study on removal of cadmium by hybrid liquid membrane process,” J. Hazard. Mater., vol. 177(1-3), pp. 660–667, May. 2010. DOI:

[17] S. Shimizu, and H. Hamada, “Synthesis of giant zeolite crystals by a bulk material dissolution technique,” Micropor. Mesopor. Mater., vol. 48 (1-3), pp. 39-46, Nov. 2001. DOI:

[18] A. Tripathi, and J.B. Parise, “Hydrothermal synthesis and structural characterization of the aluminogermanate analogues of JBW, montesommaite, analcime and paracelsian,” Micropor. Mesopor. Mater., vol. 52 (2), pp. 65-78, Apr. 2002. DOI:

[19] C. A. Ríos, C. D. Williams, and M. J. Maple, “Synthesis of zeolites and zeotypes by hydrothermal transformation of kaolinite and metakaolinite,” Bistua, vol. 5, pp. 15-26, 2007.

[20] B. Wei, Y. Wang, M.-H. Xin, and S.-L. Qiu, “Phenol solvothermal synthesis of JBW-type zeolites,” Chem. Res. Chin. Univ., vol. 23 (5), pp. 511-513, Sep. 2007. DOI:

[21] M. T. Weller, “Where zeolites and oxides merge: semi-condensed tetrahedral frameworks,” J. Chem. Soc., Dalton Trans., vol. 23, pp. 4227-4240, 2000. DOI:

[22] A. Gil, M. A. Vicente, and L. M. Gandia, “Main factors controlling the texture of zirconia and alumina pillared clays,” Micropor. Mesopor. Mater., vol. 34 (1), pp. 115-125, Jan. 2000. DOI:

[23] M. Hervieu, and B. Raveau, “A layer structure: The titanoniobate CsTi2NbO7,” J. Solid State Chem., vol. 32 (2), pp. 161-165, Apr. 1980. DOI:

[24] V. Petricek, M. Dusek, and L. Palatinus. The crystallographic computing system, Institute of Physics, Czech Republic, 2006.

[25] E. Z. Hegazy, S. A. Kosa, I. Hamdy, and A. El Maksod, “Synthesis and characterization of JBW structure and its thermal transformation,” J Solid State Chem., vol. 196, pp. 150-156, Dec. 2012. DOI:

[26] A. D. Edgar, “A note on the lattice parameters of nepheline hydrate I,” Am. Mineral., vol. 49, pp. 1139-1141, 1964.

[27] K. G. Ragimov, M. I. Chiragov, N. M. Mustafaev, and K. S. Mamedov, “Crystal structure of synthetic sodium-alumosilicate Na3Al3Si3O12.2H2O,” Dokl. Akad Nauk URSS., Vol. 242, pp. 839-841, 1978.

[28] A. Aronne, S. Esposito, and P. Pernice, “FT-IR and DTA study of lanthanum aluminosilicates glasses,” Mater. Chem. Phys., vol. 51 (2), pp. 163–168, Nov. 1997. DOI:

[29] A. Aronne, S. Esposito, C. Ferone, M. Pansini, and P. Pernice, “FT-IR study of the thermal transformation of barium-exchanged zeolite A to celsian,” J. Mater. Chem., vol. 12 (10), pp. 3039–3045, Sep. 2002. DOI:

[30] M. Park, C. L. Choi, W. T. Lim, M. C. Kim, J. Choi, and N. H. Heo, “Molten-salt method for the synthesis of zeolitic materials: I. Zeolite formation in alkaline molten-salt system,” Micropor. Mesopor. Mater., vol. 37 (1-2), pp. 81-89, May. 2000. DOI:

[31] M. C. Barnes, J. Addai-Mensah, and A. R. Gerson, “The mechanism of the sodalite-to-cancrinite phase transformation in synthetic spent Bayer liquor,” Micropor. Mesopor. Mater., vol. 31 (3), pp. 287-302, Nov. 1999. DOI:

[32] D. W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Use, 1st Ed., John Wiley, New York, 1974.

[33] C. Klein, and C. S. Hurlbut Jr., Manual of mineralogy: (after James D. Dana). 21st ed., rev. New York: J. Wiley, 1999.

[34] J. Pan, H. Zhang, and M. Pan, “Self-assembly of Nafion molecules onto silica nanoparticles formed in situ through sol-gel process,” J. Colloid Interf. Sci., vol. 326 (1), pp. 55-60, Oct. 2008. DOI:

[35] L. Mafra, J. A. Vidal-Moya, and T. Blasco. Annual Reports on NMR Spectroscopy, vol. 77, pp. 259–351, 2012. DOI:

[36] A. Cestari, L. Rodrigues-Avila, E. C. Oliveira-Nassor, P. F. dos Santos Pereira, P. S. Calefi, K. J. Ciuffi, S. H. Nakagaki, A. C. Pereira-Gomes, and E. J. Nassar, “Characterization of the Calcium-Fluoroaluminosilicate Glass Prepared by a Non-Hydrolytic Sol-Gel Route for Future Dental Application as Glass Ionomer Cement,” Mat. Res., vol. 12(2), pp. 139-143, 2009. DOI:

[37] The NMR Lab, Institute of Chemistry, Hebrew University, 2015. Available on:


Download data is not yet available.