Skip to main navigation menu Skip to main content Skip to site footer

Structural analysis of the JBW (Na-J, barrer and white) zeotype obtained from kaolinite-rich clay


The JBW zeolite was prepared from hydrogels under hydrothermal conditions by alkaline reaction, using NaOH as activating agent. The synthetic zeotype was studied by analytical techniques such as X-ray powder diffraction, scanning electron microscopy, Fourier transformed infrared spectroscopy and solid-state 29Si and 27Al Magic angle spinning nuclear magnetic resonance. Crystallographic data revealed that the JBW structure can be described by the orthorhombic space group Pna21, with unit cell parameters a=16.409(2) Å, b=14.966(2) Å and c=5.2154(5) Å.


hydrogels, JBW structure, orthorhombic, space group, unit cell, zeotype



[1] T. Selvam, G.T.P. Mabande, M. Köstner, F. Scheffler, and W. Schwieger, “Hydrothermal transformation of porous glass beads into porous glass beads containing zeolite beta (BEA),” Stud. Surf.Sci. Catal., vol. 154, pp. 598–605, 2004. DOI:

[2] L. Heller-Kallai, and I. Lapides, “Reactions of kaolinites and metakaolinites with NaOH - comparison of different samples (Part 1),” Appl. Clay Sci., vol. 35 (1-2), pp. 99–107, Jan. 2007. DOI:

[3] C. A. Rios, C.D. Williams, and M.A. Fullen, “Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods,” Appl. Clay Sci., vol. 42 (3-4), pp. 446–454, Jan. 2009. DOI:

[4] Y. Zhao, B. Zhang, X. Zhang, J. Wang, J. Liu, and R. Chen, “Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions,” J. Hazard. Mater., vol. 178 (1-3), pp. 658–664, Jun. 2010. DOI:

[5] E. Z. Hegazy, I. H. Abd El Maksod, and R. M. M. Abo El Enin, “Preparation and characterization of Ti and V modified analcime from local kaolin,” Appl. Clay Sci., vol. 49 (3), pp. 149–155, Jul. 2010. DOI:

[6] M. M. Selim, and I.H.A.E. Maksod, “Hydrogenation of edible oil over zeolite prepared from local kaolin,” Micropor. Mesopor. Mater., vol. 74 (1-3), pp. 79–85, Sep. 2004. DOI:

[7] A. M. Healey, P.F. Henry, G.M. Johnson, M.T. Weller, T.M. Webster, and A.J. Genge, “The synthesis and characterisation of JBW-type zeolites. Part B: Sodium/rubidium aluminogermanate, Na2Rb[Al3Ge3O12]·H2O,” Micropor. Mesopor. Mater., vol. 37 (1-2), pp. 165-174, May. 2000. DOI:

[8] A. M. Healey, G. M. Johnson, and M. T. Weller, “The synthesis and characterization of JBW-type zeolites. Part A: Sodium/potassium aluminosilicate, Na2K[Al3Si3O12]·0.5H2O,” Micropor. Mesopor. Mater., vol. 37 (1-2), pp. 153–163, May. 2000. DOI:

[9] W.-J. Dong, W.-J. Li, K.-F. Yu, K. Krishna, L.-Z. Song, X.-F. Wang, Z.-C. Wang, M. O. Coppens, and S.-H. Feng, “Synthesis of silica nanotubes from kaolin clay,” Chem. Commun., vol. 11, pp. 1302–1303, May. 2003. DOI:

[10] Ch.-F. Wang, J.-Sh. Li, L.-J. Wang, and X.-Y. Sun, “Influence of NaOH concentrations on synthesis of pure-form zeolite. A from fly ash using two-stage method,” J. Hazard. Mater., vol. 155 (1-2), pp. 58–64, Jan. 2008. DOI:

[11] C. Baerlocher, and L. McCusker. “Database of Zeolite Structures,” 2013. Available on

[12] R. M. Barrer, and E.A.D. White, “The hydrothermal chemistry of silicates. Part II. Synthetic crystalline sodium aluminosilicates,” J. Chem. Soc., vol. 2, pp. 1561–1571, 1952. DOI:

[13] S. Hansen, and L. Fälth, “X-ray study of the nepheline hydrate I structure,” Zeolites, vol. 2 (3), pp. 162-166, Jul. 1982. DOI:

[14] D.-Ch. Lin, X.-W. Xu, F. Zuo, and Y.-C. Long, “Crystallization of JBW, CAN, SOD and ABW type zeolite from transformation of metakaolin,” Micropor. Mesopor. Mater., vol. 70 (1-3), pp. 63-70, May. 2004. DOI:

[15] C.A. Ríos. Synthesis of zeolites from geological materials and industrial wastes for potential application in environmental problems, Ph.D. Thesis. Wolverhampton, West Midlands: University of Wolverhampton, 2008.

[16] H. R. Mortaheb, A. Zolfaghari, B. Mokhtarani, M. H. Amini, and V. Mandanipour, “Study on removal of cadmium by hybrid liquid membrane process,” J. Hazard. Mater., vol. 177(1-3), pp. 660–667, May. 2010. DOI:

[17] S. Shimizu, and H. Hamada, “Synthesis of giant zeolite crystals by a bulk material dissolution technique,” Micropor. Mesopor. Mater., vol. 48 (1-3), pp. 39-46, Nov. 2001. DOI:

[18] A. Tripathi, and J.B. Parise, “Hydrothermal synthesis and structural characterization of the aluminogermanate analogues of JBW, montesommaite, analcime and paracelsian,” Micropor. Mesopor. Mater., vol. 52 (2), pp. 65-78, Apr. 2002. DOI:

[19] C. A. Ríos, C. D. Williams, and M. J. Maple, “Synthesis of zeolites and zeotypes by hydrothermal transformation of kaolinite and metakaolinite,” Bistua, vol. 5, pp. 15-26, 2007.

[20] B. Wei, Y. Wang, M.-H. Xin, and S.-L. Qiu, “Phenol solvothermal synthesis of JBW-type zeolites,” Chem. Res. Chin. Univ., vol. 23 (5), pp. 511-513, Sep. 2007. DOI:

[21] M. T. Weller, “Where zeolites and oxides merge: semi-condensed tetrahedral frameworks,” J. Chem. Soc., Dalton Trans., vol. 23, pp. 4227-4240, 2000. DOI:

[22] A. Gil, M. A. Vicente, and L. M. Gandia, “Main factors controlling the texture of zirconia and alumina pillared clays,” Micropor. Mesopor. Mater., vol. 34 (1), pp. 115-125, Jan. 2000. DOI:

[23] M. Hervieu, and B. Raveau, “A layer structure: The titanoniobate CsTi2NbO7,” J. Solid State Chem., vol. 32 (2), pp. 161-165, Apr. 1980. DOI:

[24] V. Petricek, M. Dusek, and L. Palatinus. The crystallographic computing system, Institute of Physics, Czech Republic, 2006.

[25] E. Z. Hegazy, S. A. Kosa, I. Hamdy, and A. El Maksod, “Synthesis and characterization of JBW structure and its thermal transformation,” J Solid State Chem., vol. 196, pp. 150-156, Dec. 2012. DOI:

[26] A. D. Edgar, “A note on the lattice parameters of nepheline hydrate I,” Am. Mineral., vol. 49, pp. 1139-1141, 1964.

[27] K. G. Ragimov, M. I. Chiragov, N. M. Mustafaev, and K. S. Mamedov, “Crystal structure of synthetic sodium-alumosilicate Na3Al3Si3O12.2H2O,” Dokl. Akad Nauk URSS., Vol. 242, pp. 839-841, 1978.

[28] A. Aronne, S. Esposito, and P. Pernice, “FT-IR and DTA study of lanthanum aluminosilicates glasses,” Mater. Chem. Phys., vol. 51 (2), pp. 163–168, Nov. 1997. DOI:

[29] A. Aronne, S. Esposito, C. Ferone, M. Pansini, and P. Pernice, “FT-IR study of the thermal transformation of barium-exchanged zeolite A to celsian,” J. Mater. Chem., vol. 12 (10), pp. 3039–3045, Sep. 2002. DOI:

[30] M. Park, C. L. Choi, W. T. Lim, M. C. Kim, J. Choi, and N. H. Heo, “Molten-salt method for the synthesis of zeolitic materials: I. Zeolite formation in alkaline molten-salt system,” Micropor. Mesopor. Mater., vol. 37 (1-2), pp. 81-89, May. 2000. DOI:

[31] M. C. Barnes, J. Addai-Mensah, and A. R. Gerson, “The mechanism of the sodalite-to-cancrinite phase transformation in synthetic spent Bayer liquor,” Micropor. Mesopor. Mater., vol. 31 (3), pp. 287-302, Nov. 1999. DOI:

[32] D. W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Use, 1st Ed., John Wiley, New York, 1974.

[33] C. Klein, and C. S. Hurlbut Jr., Manual of mineralogy: (after James D. Dana). 21st ed., rev. New York: J. Wiley, 1999.

[34] J. Pan, H. Zhang, and M. Pan, “Self-assembly of Nafion molecules onto silica nanoparticles formed in situ through sol-gel process,” J. Colloid Interf. Sci., vol. 326 (1), pp. 55-60, Oct. 2008. DOI:

[35] L. Mafra, J. A. Vidal-Moya, and T. Blasco. Annual Reports on NMR Spectroscopy, vol. 77, pp. 259–351, 2012. DOI:

[36] A. Cestari, L. Rodrigues-Avila, E. C. Oliveira-Nassor, P. F. dos Santos Pereira, P. S. Calefi, K. J. Ciuffi, S. H. Nakagaki, A. C. Pereira-Gomes, and E. J. Nassar, “Characterization of the Calcium-Fluoroaluminosilicate Glass Prepared by a Non-Hydrolytic Sol-Gel Route for Future Dental Application as Glass Ionomer Cement,” Mat. Res., vol. 12(2), pp. 139-143, 2009. DOI:

[37] The NMR Lab, Institute of Chemistry, Hebrew University, 2015. Available on:


Download data is not yet available.