Skip to main navigation menu Skip to main content Skip to site footer

Advancements in Three-Phase Short-Circuit Fault Computation for Power System Generators: A Comprehensive Review

Abstract

The Synchronous Machine (SM) representation is crucial for understanding the power system's behavior during transient states, particularly in stability and short circuit studies. The SM is typically modeled using complete models (structure and parameters) that simulate its transient state via a three-phase short-circuit fault. This paper reviews the current state of the art in the SM representation, focusing on its model structure and parameter determination through test-measurement techniques. Most SM research is centered on these two areas. Research on simulating empirical three-phase short-circuit faults involves two approaches: computing with an empirical short-circuit function and numerical integration using Electromagnetic Transient Programs (EMTP), which show machine behavior through magnitude curves over time. However, current computational limitations prevent analytical descriptions of the SM behavior in transient states. Therefore, the focus of research should be on determining a closed-form solution for the frequency response test, also known as the SSFR, which provides the most information about the SM behavior.

Keywords

power system generator, short-circuit fault, three-phase fault, current computation

PDF XML

References

  1. Y. Zhang, Advanced synchronous machine modeling, Doctoral Thesis, University of Kentucky, Lexington, KY, 2018. https://doi.org/10.13023/ETD.2018.211
  2. IEEE Power and Energy Society, IEEE Guide for Synchronous Generator Modeling Practices and Applications in Power System Stability Analyses, IEEE Std 1110™-2002, 2003.
  3. S. Berhausen, A. Boboń, “Determination of high-power synchronous generator subtransient reactances based on the waveforms for a steady state two-phase short-circuit,” Applied Mathematics and Computation, vol. 319, pp. 538-550, 2018. https://doi.org/10.1016/j.amc.2017.06.003
  4. Y. Xiao, L. Zhou, J. Wang, R. Yang, “Finite Element Computation of Transient Parameters of a Salient-Pole Synchronous Machine,” Energies, vol. 10, no. 7, pp. 1-18, 2017. https://doi.org/10.3390/en10071015
  5. S. D. Pekarek, 0. Wasynczuk, H. J. Hegner, “An Efficient and Accurate Model for the Simulation and Analysis of Synchronous Machine/Converter Systems,” IEEE Transactions on Energy Conversion, vol. 13, no. 1, pp. 42-48, 1998. https://doi.org/10.1109/60.658202
  6. L. Wang, J. Jatskevich, “A Voltage-Behind-Reactance Synchronous Machine Model for the EMTP-Type Solution,” IEEE Transactions on Power Systems, vol. 21, no. 4, pp. 1539-1549, 2006. https://doi.org/10.1109/TPWRS.2006.883670
  7. L. Lupşa-Tătaru, “Comparative Simulation Study on Synchronous Generators Sudden Short Circuits,” Modelling and Simulation in Engineering, vol. 2009, e867150 2009. https://doi.org/10.1155/2009/867150
  8. L. Wang, J. Jatskevich, H. W. Dommel, “Re-examination of Synchronous Machine Modeling Techniques for Electromagnetic Transient Simulations,” IEEE Transactions on Power Systems, vol. 22, no. 3, pp. 1221-1230, 2007. https://doi.org/10.1109/TPWRS.2007.901308
  9. O. Chiver, L. Neamt, O. Matei, “Comparative study on sudden short-circuit currents of a synchronous generator,” in IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), Rome, Italy, 2015, pp. 1–6. https://doi.org/10.1109/EEEIC.2015.7165426
  10. M. Hackbart, “Novel approach to calculate electrical currents in stator-, field- and damper-windings at three-phase sudden short-circuit for large synchronous generators,” Elektrotechnik und Informationstechnik, vol. 133, no. 2, pp. 112-120, 2016. https://doi.org/10.1007/s00502-016-0389-7
  11. C. Jäger, I. Grinbaum, J. Smajic, “Dynamic Short-Circuit Analysis of Synchronous Machines,” IEEE Transactions on Magnetics, vol. 53, no. 6, pp. 1-4, 2017. https://doi.org/10.1109/TMAG.2017.2661580
  12. M. A. Hassan, “Dynamic Behavior Analysis of Synchronous Generator Using MATLAB/SIMULINK”, in International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE), Khartoum, Sudan, 2015, pp. 143-148. https://doi.org/10.1109/ICCNEEE.2015.7381445
  13. G. Sianipar, “Closed Form Solution of Synchronous Machine Short Circuit Transients,” ITB Journal of Engineering Science, vol. 42, no. 1, pp. 91-102, 2010. https://doi.org/10.5614/itbj.eng.sci.2010.42.1.7
  14. H. Saadat, “Synchronous Machine Transient Analysis”, in Power System Analysis, Boston, MASS: WCB/McGraw Hill Editions, 1999, pp. 314-349.
  15. P. M. Anderson, “Sequence Impedance of Machines”, in Analysis of Faulted Power Systems, New York, NY: Wiley-IEEE Press, 1995, pp. 183-228.
  16. N. D. Tleis, “Modelling of ac rotating machines”, in Power Systems Modelling and Fault Analysis, Oxford, UK: Elsevier Ltd., 2008, pp. 301-385.
  17. K. R. Padiyar, “Modelling of Synchronous Machine”, in Power System Dynamics, Stability and Control, Hyderabad, AP: BS Publications, 2008, pp. 43-107.
  18. P. M. Anderson, A. A. Fouad, “The Synchronous Machine”, in Power System Control and Stability, New York, NY: Wiley-IEEE Press, 2003, pp. 83-146.
  19. J. C. Das, “Transient Behavior of Synchronous Generators”, in Transients in Electrical Systems, New York, NY: McGraw-Hill, 2010, pp. 235-263.
  20. I. Boldea, Synchronous Generators, Boca Raton, FL: Taylor & Francis Group, LLC, 2006.
  21. B. Adkins, R. G. Harley, “The General Equations of A.C. Machines”, in The General Theory of Alternating Current Machines, New York, NY: John Wiley & Sons, Inc., 1975, pp. 58-97.
  22. R. H. Park, “Two Reaction Theory of Synchronous Machines, Generalized Method of Analysis-Part I,” Transactions of the American Institute of Electrical Engineers, vol. 48, no. 3, pp. 716-727, 1929. https://doi.org/10.1109/T-AIEE.1929.5055275
  23. R. H. Park, “Two Reaction Theory of Synchronous Machines – II,” Transactions of the American Institute of Electrical Engineers, vol. 52, no. 2, pp. 352-354, 1933. https://doi.org/10.1109/T-AIEE.1933.5056309
  24. IEEE Power and Energy Society, Guide for Test Procedures for Synchronous Machines Including Acceptance and Performance Testing and Parameter Determination for Dynamic Analysis, IEEE Std 115™-2019, 2020.
  25. D. N. Konidaris, J. A. Tegopoulos, “Parameter Identification of Synchronous Machines by Tests,” in Parameter Identification and Computer Aided Diagnostics of Electrical Machines, Budapest, Hungary, 1995, pp. 1-12.
  26. D. Ghanim, Experimental Determination of Equivalent Circuit Parameters for a Laboratory Salient-Pole Synchronous Generator, Master Thesis, University of Newfoundland, St. John's, CA-NL, 2012.
  27. L. Salvatore, M. Savino, “Experimental determination of synchronous machine parameters,” IEE Proceedings (Electric Power Aplications), vol. 128, no. 4, pp. 212-218, 1981. https://doi.org/10.1049/IP-B.1981.0035
  28. K. Erliang, S. Li, L. Bo, Y. Changsheng, “A Novel Method for Identifying Large Steam Turbine-Generator Parameters by Load Rejection Test,” in International Conference on Electrical Machines and Systems, Nanjing, China, 2005, pp. 119-123. https://doi.org/10.1109/ICEMS.2005.202497
  29. A. Belqorchi, U. Karaagac, J. Mahseredjian, I. Kamwa, “Standstill Frequency Response Test and Validation of a Large Hydrogenerator,” IEEE Transactions on Power Systems, vol. 34, no. 3, pp. 2261-2269, 2019. https://doi.org/10.1109/TPWRS.2018.2889510
  30. S. D. Umans, J. A. Mallick, G. L. Wilson, “Modeling of Solid Rotor Turbogenerators Part I: Theory and Techniques,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-97, no. 1, pp. 269-277, 1978. https://doi.org/10.1109/TPAS.1978.354478
  31. S. D. Umans, J. A. Mallick, G. L. Wilson, “Modeling of Solid Rotor Turbogenerators Part II: Example of Model Derivation and Use in Digital Simulation,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-97, no. 1, pp. 278-291, 1978. https://doi.org/10.1109/TPAS.1978.354479
  32. Y. Jin, A. M. El-Serafi, “A “Three Transfer Functions” Approach for the Standstill Frequency Response Test of Synchronous Machine,” IEEE Transactions on Energy Conversion, vol. 5, no. 4, pp. 740-749, 1990. https://doi.org/10.1109/60.63148
  33. I. Kamwa, P. Viarouge, “On equivalent Circuit Structures for Empirical Modeling of Turbine-Generators,” IEEE Transactions on Energy Conversion, vol. 9, no. 3, pp. 579-592, 1994. https://doi.org/10.1109/60.326479
  34. G. Trinidad, Determinación de los Parámetros de Máquinas Sincrónicas Mediante la Prueba de Respuesta a la Frecuencia con el Rotor en Reposo, Master Thesis, Escuela Superior de Ingeniería Mecánica y Eléctrica, México, D. F., MX-MEX, 2010.
  35. A. H. Almarhoon, Synchronous Generator Parameter Identification from Measurement Data, Master Thesis, University of Manchester, Manchester, UK-GM, 2012.
  36. I. Kamwa, M. Pilote, H. Carle, P. Viarouge, B. Mpanda-Mabwe, M. Crappe, “Computer Software to Automate the Graphical Analysis of Sudden-Short-Circuit Oscillograms of Large Synchronous Machines,” IEEE Transactions on Energy Conversion, vol. 10, no. 3, pp. 399-406, 1995. https://doi.org/10.1109/60.464860
  37. Y. Jin, A Study of the STandstill Frequency Response Test for Synchronous Machines, Master Thesis, University of Saskatchewan, Saskatoon, CA-SK, 1988.
  38. J. C. Peqqueña, E. Ruppert, M. T. Mendoza, “On the Synchronous Generator Parameters Determination Using Dynamic Simulations Based on IEEE Standards,” in IEEE International Conference on Industrial Technology, Villa del Mar, Chile, 2020, pp. 1-6. https://doi.org/10.1109/ICIT.2010.5472769
  39. F. P. de Mello, L. N. Hannett, “Representation of Saturation in Synchronous Machines,” IEEE Transactions on Power Systems, vol. 1, no. 4, pp. 8-14, 1986. https://doi.org/10.1109/TPWRS.1986.4335007
  40. J. R. Marti, K. W. Louie, “A Phase-Domain Synchronous Generator Model Including Saturation Effects,” IEEE Transactions on Power Systems, vol. 12, no. 1, pp. 222-229, 1997. https://doi.org/10.1109/59.574943
  41. H. Rehaoulia, H. Henao, G. A. Capolino, “Modeling of synchronous machines with magnetic saturation,” Electric Power Systems Research, vol. 77, no. 5-6, pp. 652-659, 2007. https://doi.org/10.1016/j.epsr.2006.06.003
  42. A. S. Saidi, “A Nonlinear Saturation Model of Synchronous Machines with Account Cross Saturation,” International Journal of Advanced and Applied Sciences, vol. 6, no. 9, pp. 20-24, 2019. https://doi.org/10.21833/ijaas.2019.09.003
  43. D. C. Aliprantis, S. D. Sudhoff, B. T. Kuhn, “A Synchronous Machine Model with Saturation and Arbitrary Rotor Network Representation,” IEEE Transactions on Energy Conversion, vol. 20, no. 3, pp. 584-594, 2005. https://doi.org/10.1109/TEC.2005.845455
  44. T. A. Lipo, “Transient Analysis of Synchronous Machines”, in Analysis of Synchronous Machines, Boca Raton, FL: Taylor & Francis Group, LLC, 2012, pp. 265-313.
  45. L. A. Kilgore, “Calculation of Synchronous Machine Constants - Reactances and Time Constants Affecting Transient Characteristics,” Transactions of the American Institute of Electrical Engineers, vol. 50, no. 4, pp. 1201-1213, 1931. https://doi.org/10.1109/T-AIEE.1931.5055943
  46. I.M. Canay, “Determination of model parameters of synchronous machines,” IEEE Proceedings B (Electric Power Aplications), vol. 130, no. 2, pp. 86-94, 1983. https://doi.org/10.1049/ip-b.1983.0014
  47. F. L. Alvarado, C. Cañizares, “Synchronous Machine Parameters from Sudden-Short Tests by Back-Solving,” IEEE Transactions on Energy Conversion, vol. 4, no. 2, pp. 224-236, 1989. https://doi.org/10.1109/60.17916
  48. R. Wamkeue, C. Jolette, I. Kamwa, “Alternative Approaches for Linear Analysis and Prediction of a Synchronous Generator Under Partial- and Full-Load Rejection Tests,” IET Electric Power Applications, vol. 1, no. 4, pp. 581-590, 2007. http://dx.doi.org/10.1049/iet-epa:20060217
  49. I. M. Canay, “Determination of the Model Parameters of Machines From the Reactance Operators xd(p), Xq(p) (Evaluation of Standstill Frequency Response Test),” IEEE Transactions on Energy Conversion, vol. 8, no. 2, pp. 272-279, 1993. https://doi.org/10.1109/60.222718
  50. I. M. Canay, “Advance Calculation of the Characteristic Quantities of Synchronous Machines and Comparison with Measured Values,” IEEE Proceedings-Electric Power Applications, vol. 141, no. 1, pp. 13-18, 1994. https://doi.org/10.1049/ip-epa:19949862
  51. A. Tumageanian, A. Keyhani, “ldentlflcatlon of Synchronous Machine Linear Parameters from Standstill Step Voltage Input Data,” IEEE Transactions on Energy Conversion, vol. 10, no. 2, pp. 232-240, 1995. https://doi.org/10.1109/60.391887
  52. P. Kundur, “Sychronous Machine Theory and Modelling”, in Power System Stability and Control, New York, NY: McGraw-Hill, 1994, pp. 45-136.

Downloads

Download data is not yet available.