Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Gasificación de carbón, biomasa de Chenopodium album, y cogasificación de una mezcla de carbón y biomasa mediante análisis termogavimétrico de gases

Resumen

Se llevaron a cabo estudios de gasificación con carbón subituminoso de la provincia Centro del departamento de Boyacá (Colombia), biomasa vegetal de Chenopodium album (cenizo) y de cogasificación de mezclas de carbón-biomasa, aglomerada con parafina en un analizador termogravimétrico.  Se observó que la biomasa promovió sinergéticamente la transformación termoquímica del carbón.  Los resultados experimentales fueron comparados con simulaciones de la composición de equilibrio.  Se realizaron pruebas de fusibilidad de cenizas de la mezcla carbón-biomasa, que permitieron determinar si se comportarían como cenizas secas o fluidas durante el proceso de gasificación, de acuerdo con la composición química. A partir de la experimentación fue posible establecer diferencias entre la descomposición térmica del carbón, el cenizo y la mezcla de carbón-biomasa, las cuales son atribuibles a las propiedades fisicoquímicas de cada combustible sólido.  Para precisar la composición del syngas producido durante las pruebas, se hicieron análisis de cromatografía de gases.  El syngas obtenido a partir de la biomasa tuvo la concentración más alta de CO y la más baja de H2; el carbón y la mezcla carbón-biomasa tuvieron concentraciones ligeramente menores.  Las concentraciones de CH4, CO2 y C2H4 fueron similares entre el carbón y la biomasa.  Este resultado es consistente con el valor calorífico alto del syngas obtenido a partir del carbón. La producción del syngas de la mezcla carbón-biomasa presentó los valores más bajos en los contenidos de H2 y CO, debido al fenómeno sinergético que ocurre con la mezcla del combustible.  La cogasificación de la mezcla carbón-biomasa dio la mayor producción de gas, de eficiencia en la conversión de carbón y de eficiencia térmica. Estos resultados indican la viabilidad del proceso de cogasificación de mezclas aglomeradas de carbón con Chenopodium album. En gasificación de mezclas no aglomeradas de carbón-cenizo, la biomasa puede quemarse directamente sin producir syngas.

Palabras clave

carbón-biomasa, chenopodium álbum, cogasificación, gas de síntesis, mezclas aglomeradas, sinergia

PDF (English) XML (English)

Referencias

[1] D. Ayhan, “Sustainable cofiring of biomass with coal,” Energy Convers. Manag., vol. 44 (9), pp. 1465-1479, 2003.

[2] P. Correa, “Colombia Reducirá en un 20% sus emisiones de CO2,” El Espectador, p. 12, Sep. 2015.

[3] A. Demirbaş, “Global renewable energy resources,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 28 (8), pp. 779-792, 2006. https://doi.org/10.1080/00908310600718742.

[4] S. Adhikari, S. Fernando, S. R. Gwaltney, S. D. Filip To, R. M. Bricka, P. H. Steele, and A. Haryanto, “A thermodynamic analysis of hydrogen production by steam reforming of glycerol,” Int. J. Hydrogen Energy, vol. 32 (14), pp. 2875-2880, Sep. 2007. https://doi.org/10.1016/j.ijhydene.2007.03.023.

[5] D. Tillman, D. Duong, and N. S. Harding, Solid Fuel Blending: principles, practices and problems. Oxford - Reino Unido: Butterworth-Heinemann, p. 337, 2012.

[6] J. J. Battista Jr., E. E. Hughes, and D. A. Tillman, “Biomass cofiring at Seward Station. (Cofiring benefits for coal and biomass),” Biomass and Bioenergy, vol. 19, pp. 419-427, Dec. 2000. https://doi.org/10.1016/s0961-9534(00)00053-2.

[7] D. Mallick, P. Mahanta, and V. S. Moholkar, “Co-gasification of coal and biomass blends: Chemistry and engineering,” Fuel, vol. 204, pp. 106-128, Sep. 2017. https://doi.org/10.1016/j.fuel.2017.05.006.

[8] J. Rezaiyan, and N. Cheremisinoff, Gasification Technologies: A primer for Engineers and Scientists. Boca Ratón - Florida: VRC Taylor and Francis Group, 2005. https://doi.org/10.1201/9781420028140.

[9] P. N. Sheth, and B. V. Babu, “Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier,” Bioresour. Technol., vol. 100 (12), pp. 3127-3133, 2009. https://doi.org/10.1016/j.biortech.2009.01.024.

[10] D. A. Bell, B. F. Towler, and M. Fan, Coal Gasification and Its Utilization, vol. I. Elsevier, Butterworth-Heinemann, 2011.

[11] L. Emami-Taba, M. F. Irfan, W. M. A. Wan Daud, and M. H. Chakrabarti, “Fuel blending effects on the co-gasification of coal and biomass - A review,” Biomass and Bioenergy, vol. 57, pp. 249-263, 2013. https://doi.org/10.1016/j.biombioe.2013.02.043.

[12] L. . T. Faccini, and D. Nisensohn, Manual de reconocimiento y manejo de malezas. Corpscience Bayer, Rosario - Argentina, p. 100, 2012.

[13] J. Holm, L. Plucknett, D. Pancho, and L. Herberger, The world’s worst weeds. Honolulu - Hawaii: University Press, 1977.

[14] M. Coquillat, Sur les plantes les plus communes a la surface du globe. Lyon - France: Société linnéenne de Lyon, pp. 165–170, 1951. https://doi.org/10.3406/linly.1951.7425.

[15] A. Poonia, and A. Upadhayay, “Chenopodium album Linn : review of nutritive value and biological properties,” vol. 52, pp. 3977-3985, Jul. 2015. https://doi.org/10.1007/s13197-014-1553-x.

[16] R. Xu, B. Dai, W. Wang, J. Schenk, and Z. Xue, “Effect of iron ore type on the thermal behaviour and kinetics of coal-iron ore briquettes during coking,” Fuel Process. Technol., vol. 173, pp. 11-20, Oct. 2018. https://doi.org/10.1016/j.fuproc.2018.01.006.

[17] G. R. Kale, B. D. Kulkarni, and R. N. Chavan, “Combined gasification of lignite coal: Thermodynamic and application study,” J. Taiwan Inst. Chem. Eng., vol. 45 (1), pp. 163-173, 2014. https://doi.org/10.1016/j.jtice.2013.04.015.

[18] C. F. Valdés, G. Marrugo, F. Chejne, J. D. Román, and J. I. Montoya, “Effect of atmosphere reaction and heating rate on the devolatilization of a Colombian sub-bituminous coal,” J. Anal. Appl. Pyrolysis, vol. 121, pp. 93-101, 2016. https://doi.org/10.1016/j.jaap.2016.07.007.

[19] R. G. M. Desamparados, Caracterización fundamental de ensayos termogravimétricos - Video. Valencia, España: Universidad Politécnica de Valencia, 2014.

[20] C. F. Valdés, G. Marrugo, F. Chejne, J. I. Montoya, and C. A. Gómez, “Pilot-Scale Fluidized-Bed Co-gasification of Palm Kernel Shell with Sub-bituminous Coal,” Energy and Fuels, vol. 29 (9), pp. 5894-5901, 2015. https://doi.org/10.1021/acs.energyfuels.5b01342.

[21] S. V Vassilev, K. Kitano, S. Takeda, and T. Tsurue, “Influence of mineral and chemical-composition of coal ashes on their fusibility,” Fuel Process. Technol., vol. 45 (95), pp. 27-51, 1995. https://doi.org/10.1016/0378-3820(95)00032-3.

[22] B. C. Young, M. D. Mann, and M. E. Collings, “Formation of NOx and N2O in the fluidized-bed combustion of high- and low-rank coals,” Coal Sci. Technol., vol. 21, pp. 419-436, 1993. https://doi.org/10.1016/b978-0-444-81476-0.50040-5.

[23] K. D. R. Vanderlans, P. Glarborg, “Influence of process parameters on nitrogen oxide formation in pulverized coal burners,” Energy Combust., vol. 23, pp. 349-377, 1997. https://doi.org/10.1016/s0360-1285(97)00012-9.

[24] P. Glarborg, J. A. Miller, B. Ruscic, and S. J. Klippenstein, “Modeling nitrogen chemistry in combustion,” Prog. Energy Combust. Sci., vol. 67, pp. 31-68, 2018. https://doi.org/10.1016/j.pecs.2018.01.002.

[25] K. Qin, “Entrained Flow Gasification of Biomass," Doctoral Thesis, Technical University of Denmark, Denmark, pp. 16-39, 2012.

[26] A. Cerquera, C. Rodriguez, and D. Ruano, “Análisis mineralógico, químico y porosimétrico de los agregados pétreos de una cantera perteneciente a la formación geológica de la sabána en el municipio de Soacha-Cundinamarca,” Thesis Grade, Universidad Católica de Colombia, Bogotá D.C., Colombia, 2017.

[27] G. Zhang, J. T. Germaine, R. T. Martin, and A. J. Whittle, “A simple sample-mounting method for random powder X-ray diffraction,” Clays Clay Miner., vol. 51 (2), pp. 218-225, 2003. https://doi.org/10.1346/ccmn.2003.0510212.

[28] A. Haryanto, S. D. Fernando, L. O. Pordesimo, and S. Adhikari, “Upgrading of syngas derived from biomass gasification: A thermodynamic analysis,” Biomass and Bioenergy, vol. 33 (5), pp. 882-889, 2009. https://doi.org/10.1016/j.biombioe.2009.01.010.

[29] I. N. Levine, Fisicoquímica Vol. 1, Madrid-Spain: Mc Graw Hill, 2004.

[30] K. Kumabe, T. Hanaoka, S. Fujimoto, T. Minowa, and K. Sakanishi, “Co-gasification of woody biomass and coal with air and steam,” Fuel, vol. 86 (5-6), pp. 684-689, 2007. https://doi.org/10.1016/j.fuel.2006.08.026.

[31] A. Żogała, “Equilibrium Simulations of Coal Gasification – Factors Affecting Syngas Composition,” J. Sustain. Min., vol. 13 (2), pp. 30-38, 2014. https://doi.org/10.7424/jsm140205.

[32] R. J. De Armas, D. Macías M., and A. C. Amed A., “Modelamiento y Simulación con Matlab,” 2000. Available at: https://es.scribd.com/document/309658623/LIBRO-MODELAMIENTO-Y-SIMULACION-pdf.

[33] M. A. Lara et al., “Thermodynamic simulation of reduction of mixtures of iron ore, siderurgical wastes and coal,” Metalurgija, vol. 58 (1), pp. 11-14, 2019.

[34] Z. Ma, D. Chen, J. Gu, B. Bao, and Q. Zhang, “Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods,” Energy Convers. Manag., vol. 89, pp. 251-259, 2015. https://doi.org/10.1016/j.enconman.2014.09.074.

[35] L. Burhenne, J. Messmer, T. Aicher, and M. P. Laborie, “The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 101, pp. 177-184, 2013. https://doi.org/10.1016/j.jaap.2013.01.012.

[36] A. Gani and I. Naruse, “Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass,” Renew. Energy, vol. 32 (4), pp. 649-661, 2007. https://doi.org/10.1016/j.renene.2006.02.017.

[37] P. R. Solomon, “Coal Structure and Thermal Decomposition. In New Approaches in Coal Chemistry,” ACS - Washington, D. C., vol. 169, pp. 61-71, 1981. https://doi.org/10.1021/bk-1981-0169.ch004.

[38] A. Molina, and C. R. Shaddix, “Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion,” Proc. Combust. Inst., vol. 31, pp. 1905-1912, 2007. https://doi.org/10.1016/j.proci.2006.08.102.

[39] J. F. Vélez, F. Chejne, C. F. Valdés, E. J. Emery, and C. A. Londoño, “Co-gasification of Colombian coal and biomass in fluidized bed: An experimental study,” Fuel, vol. 88 (3), pp. 424-430, 2009. https://doi.org/10.1016/j.fuel.2008.10.018.

[40] M. S. Masnadi-Shirazi, “Biomass/fossil fuel co-gasification with and without integrated CO2 capture,” Doctoral Thesis, University of British Columbia, Vancouver, Canada, 2014.

[41] G. Marrugo, C. F. Valdés, and F. Chejne, “Characterization of Colombian Agroindustrial Biomass Residues as Energy Resources,” Energy and Fuels, vol. 30 (10), pp. 8386-8398, 2016. https://doi.org/10.1021/acs.energyfuels.6b01596.

[42] M. Wang, L., Hustad, J.E., Skreiberg, Ø., Skjevrak, and G., Grønli, “A Critical Review on Additives to Reduce Ash Related Operation Problems in Biomass Combustion Applications.,” Energy Procedia, vol. 20, pp. 20-29, 2012. https://doi.org/10.1016/j.egypro.2012.03.004.

[43] T. C. Drage, C. H. Vane, and G. D. Abbott, “The closed system pyrolysis of β-O-4 lignin substructure model compounds,” Org. Geochem., vol. 33 (12), pp. 1523-1531, 2002. https://doi.org/10.1016/s0146-6380(02)00119-5.

[44] P. R. Solomon, D. G. Hamblen, R. M. Carangelo, M. A. Serio, and G. V. Deshpande, “General model of coal devolatilization,” Energy & Fuels, vol. 2, pp. 405-422, May. 2002. https://doi.org/10.1021/ef00010a006.

[45] G. Marrugo, “Efecto de los cambios estructurales de diferentes biomasas pirolizadas sobre las características del gas de síntesis, obtenido a partir de la gasificación de biochar,” Master Thesis, Universidad Nacional de Colombia, Bogotá D.C., Colombia, 2015.

[46] C. L. Lin, and W. C. Weng, “Effects of different operating parameters on the syngas composition in a two-stage gasification process,” Renew. Energy, vol. 109, pp. 135-143, 2017. https://doi.org/10.1016/j.renene.2017.03.019.

[47] O. A. Oyelaran, F. M. Sani, O. M. Sanusi, O. Balogun, and A. O. Fagbemigun, “Energy Potentials of Briquette Produced from Tannery Solid Waste,” Makara J. Technol., vol. 21 (3), p. 122, 2018. https://doi.org/10.7454/mst.v21i3.3429.

[48] A. A. Bhuiyan, A. S. Blicblau, A. K. M. S. Islam, and J. Naser, “A review on thermo-chemical characteristics of coal/biomass co-firing in industrial furnace,” J. Energy Inst., vol. 91 (1), pp. 1-18, 2018. https://doi.org/10.1016/j.joei.2016.10.006.

[49] P. Glarborg, “Fuel nitrogen conversion in solid fuel fired systems,” Energy Combust, vol. 29, pp. 89-113, 2003. https://doi.org/10.1016/s0360-1285(02)00031-x.

[50] C. F. Valdés, F. Chejne, G. Marrugo, R. J. Macias, C. A. Gómez, J. I. Montoya, C. A.Londoño, J. De La Cruz, and E. Arenas, “Co-gasification of sub-bituminous coal with palm kernel shell in fluidized bed coupled to a ceramic industry process,” Appl. Therm. Eng., vol. 107, pp. 1201-1209, 2016. https://doi.org/10.1016/j.applthermaleng.2016.07.086.

[51] S. Usón, A. Valero, L. Correas, and Á. Martínez, “Co-gasification of coal and biomass in an IGCC power plant: Gasifier modeling,” Int. J. Thermodyn., vol. 7 (4), pp. 165-172, 2004.

[52] M.R. Riazi; and R. Gupta, Coal production and processing technology. Boca Raton-Florida: CRC Press, 2016.

[53] Y. Ninomiya, and A. Sato, “Ash melting behavior under coal gasification conditions,” Energy convers, vol. 38 (10), pp. 1405-1412, 1997. https://doi.org/10.1016/s0196-8904(96)00170-7.

[54] X. Wu, Z. Zhang, G. Piao, X. He, Y. Chen, N. Kobayashi, S. Mori, and Y. Itaya, “Behavior of mineral matters in chinese coal ash melting during char-CO 2/H2O gasification reaction,” Energy and Fuels, vol. 23 (5), pp. 2420-2428, 2009. https://doi.org/10.1021/ef801002n.

[55] X. Wu, Z. Zhang, Y. Chen, T. Zhou, J. Fan, G. Piao, N. Kobayashi, S. Mori, and Y.Itaya, “Main mineral melting behavior and mineral reaction mechanism at molecular level of blended coal ash under gasification condition,” Fuel Process. Technol., vol. 91 (11), pp. 1591-1600, 2010. https://doi.org/10.1016/j.fuproc.2010.06.007.

[56] L. L. Baxter, L.L., Miles, T.R., Miles, T.R., Jenkins, B.M., Milne, T., Dayton, D., Bryers, R.W., Oden, “The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences.,” Fuel Process, vol. 5, pp. 47-78, 1998. https://doi.org/10.2172/251289.

[57] P. Johansen, J.M. Aho, M. Paakkinen, K. Taipale, R. Egsgaard, H. Jakobsen, J.G. Frandsen, and F.J. Glarborg, “Release of K, Cl, and S during combustion and co-combustion with wood of high-chlorine biomass in bench and pilot scale fuel beds,” Release K, Cl, S Dur. Combust. co-combustion with wood high-chlorine biomass bench Pilot scale fuel beds., vol. Proc. Comb, pp. 2363-2372, 2013. https://doi.org/10.1016/j.proci.2012.07.025.

[58] Z. Werther, J., Saenger, M., Hartge, E.-U., Ogada, T., Siagi, “Combustion of agricultural residues.,” Energy Combust., vol. 26, pp. 1-27, 2000. https://doi.org/10.1016/s0360-1285(99)00005-2.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a