Synthetic fuel production from shredded scrap waste

Main Article Content

Autores

Iván Ernesto Barragán-Gutiérrez
Alfonso López-Díaz
Wolfgang Krumm

Abstract

This technological innovation project involved material identification, and design, installation, implementation, and evaluation of a pilot plant with capacity of 10 t per batch to recover materials and produce synthetic fuels (oil, syngas and solid) from shredded scrap waste. The results showed the proper way to separate materials (metals, and organic and inert compounds), and to perform the pyrolysis process to produce gas, oil, and coke as synthetic fuels from organic waste. The process started with the physicochemical characterization of the waste, followed by the selection of separation, sorting and processing technologies, and the definition of pyrolysis process parameters. Finally, the synthetic fuels were characterized, and uses for the furnace billet, ladle preheating, internal combustion engines, and auto generation were suggested. The results showed 82 % recovery of magnetic and non-magnetic metals, and production of synthetic fuels with PCI between 20 650 and 36 900 kJ/kg.

Keywords:

Article Details

Licence

All articles included in the Revista Facultad de Ingeniería are published under the Creative Commons (BY) license.

Authors must complete, sign, and submit the Review and Publication Authorization Form of the manuscript provided by the Journal; this form should contain all the originality and copyright information of the manuscript.

The authors who publish in this Journal accept the following conditions:

a. The authors retain the copyright and transfer the right of the first publication to the journal, with the work registered under the Creative Commons attribution license, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this Journal.

b. Authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly indicate that the work It was first published in this Journal.

c. Authors are allowed and recommended to publish their work on the Internet (for example on institutional or personal pages) before and during the process.
review and publication, as it can lead to productive exchanges and a greater and faster dissemination of published work.

d. The Journal authorizes the total or partial reproduction of the content of the publication, as long as the source is cited, that is, the name of the Journal, name of the author (s), year, volume, publication number and pages of the article.

e. The ideas and statements issued by the authors are their responsibility and in no case bind the Journal.

References

[1] Environmental business and technologies S.A.S., “Formulación de dos Acciones de Mitigación Nacionalmente Apropiadas el Sector Industrial -Subsector Siderúrgico (NAMAs),” EBT, Bogotá, 2015.

[2] J. Madías, “Nuevos adelantos: Procesamiento de chatarra para acerias,” Acero Latinoamericano, vol. 527, pp. 48 - 56, Jul. 2011.

[3] C. R., “Pathway to Large Scale Production of Customized Biochar A Keynote Speech,” in 4th IBI Congress, Beijing, 2012.

[4] SICON, “SICON,” 2012. [Online]. Available: http://sicontechnology.com/.

[5] K. Kubik, “Theoretical thermodynamic analysis of car residues microwave pyrolysis products, using high-temperature steam for small scale electricity generation,” Royal Institute of Tehcnology, Stockholm, 2008.

[6] C. Pasel and W. Wanzl, “Experimental investigations on reactor scale-up and optimisation of product quality in pyrolysis of shredder waste R,” Fuel Processing Technology, vol. 80 (1), pp. 47-67, 2003. DOI: http://doi.org/10.1016/S0378-3820(02)00187-X.

[7] NCERT, Physics texbook, 2014.

[8] United States Environmental Protection Agency, RCRA Waste Sampling Draft Technical Guidance Planning, Implementation and Assessment, Washington, DC 20460: Office of Solid Waste U.S. Environmental Protection Agency, 2002.

[9] INCITEMA, “Resultados plan de calidad para las pruebas de caracterización de residuos,” Tunja, Boyacá: Colombia, 2013.

[10] ENERMA, Final report SIDENAL Pyrolisys plant, Siegen: ENERMA, 2015.

[11] A&MA PLANETA AZUL, “Monitoreo emisiones en chimenea pirolizador,” Sogamoso Boyacá, 2014.

Downloads

Download data is not yet available.