Comparación de modelos de aprendizaje automático para la predicción de rendimientos agrícolas en cultivos de cacao en Santander, Colombia
Resumen
La identificación de los factores que influyen en el rendimiento (kg·ha-1) de un cultivo provee información esencial para la toma de decisiones orientadas al mejoramiento y predicción de la productividad, proporcionando posibilidades a los agricultores para mejorar sus ingresos económicos. En este estudio, se presenta la aplicación y comparación de diversos algoritmos de aprendizaje automático para la predicción del rendimiento agrícola en cultivos de cacao y la identificación de los factores que influyen sobre éste. Se comparan los algoritmos de máquinas de soporte vectorial (SVM), modelos ensamblados (Random Forest, Gradient Boosting) y el modelo de regresión Least Absolute Shrinkage and Selection Operator (LASSO). Los predictores considerados fueron: condiciones climáticas de la región, variedad de cacao, nivel de fertilización y exposición al sol para un cultivo experimental ubicado en Rionegro, Santander. Los resultados identifican a Gradient Boosting como la mejor alternativa de pronóstico con un coeficiente de determinación (R2) = 68 %, Error Absoluto Medio (MAE) = 13.32 y Raíz Cuadrada del Error Medio (RMSE) = 20.41. La variabilidad del rendimiento del cultivo es explicada principalmente por la radiación y la temperatura un mes previo a la cosecha, además de las lluvias acumuladas el mes de la cosecha. De igual manera, los rendimientos de los cultivos son evaluados con base en el tipo de exposición al sol, encontrando que la radiación un mes previo a la cosecha es el factor más influyente para los cultivos bajo sombra. Por otro lado, la lluvia y la humedad son las variables determinantes en las plantas con exposición plena a sol, lo que está asociado a los requerimientos hídricos. Estos resultados sugieren un manejo diferenciado de los cultivos dependiendo del tipo de exposición, sin tener que comprometer la productividad, dado que no se evidencia diferencia significativa en los rendimientos de ambos manejos agrícolas.
Palabras clave
aprendizaje-automático, cacao, predicción, productividad, rendimientos-agrícolas, sistemas-agroforestales
Citas
- D. Jiménez, J. Cock, A. Jarvis, J. Garcia, H. F. Satizábal, P. Van-Damme, A. Peréz-Uribe, and M. Barreto-Sanz, “Interpretation of commercial production information: A case study of lulo (Solanum quitoense), an under-researched Andean fruit,” Agricultural Systems, vol. 104 (3), pp. 258-270, Mar. 2011. https://doi.org/10.1016/j.agsy.2010.10.004 DOI: https://doi.org/10.1016/j.agsy.2010.10.004
- J. W. Jones, J. M. Antle, B. Basso, K. J. Boote, R. T. Conant, I. Foster, H. C. J. Godfay, M. Herrero, R. E. Howitt, S. Janssen, B. A. Keating, R. Munoz-Carpena, C. H. Porter, C. Rosenzweig, and T. R. Wheeler, “Brief history of agricultural systems modeling,” Agricultural Systems, vol. 155, pp. 240-254, Jul. 2017. https://doi.org/10.1016/j.agsy.2016.05.014 DOI: https://doi.org/10.1016/j.agsy.2016.05.014
- I. Diaz, S. M. Mazza, E. F. Combarro, L. I. Gimenez, and J. E. Gaiad, “Machine learning applied to the prediction of citrus production,” Spanish Journal of Agricultural Research, vol. 15 (2), e0205, Jun. 2017. https://doi.org/10.5424/sjar/2017152-9090 DOI: https://doi.org/10.5424/sjar/2017152-9090
- S. T. Drummond, K. A. Sudduth, A. Joshi, S. J. Birrell, and N. R. Kitchen, “Statistical and neural methods for site-specific yield prediction,” Transactions of the ASAE, vol. 46 (1), pp. 5-14, 2003. https://doi.org/10.13031/2013.12541 DOI: https://doi.org/10.13031/2013.12541
- J. L. De Paepe, and R. Alvarez, “Wheat Yield Gap in the Pampas: Modeling the Impact of Environmental Factors,” Agronomy, Soils & Environmental Quality, vol. 108 (4), pp. 1367-1378, 2016. https://doi.org/10.2134/agronj2015.0482 DOI: https://doi.org/10.2134/agronj2015.0482
- J. D. R. Soares, M. Pasqual, W. S. Lacerda, S. O. Silva, and S. L. R. Donato, “Comparison of techniques used in the prediction of yield in banana plants,” Scientia Horticulturae, vol. 167, pp. 84-90, Mar. 2014. https://doi.org/10.1016/j.scienta.2013.12.012 DOI: https://doi.org/10.1016/j.scienta.2013.12.012
- A. Shekoofa, Y. Emam, N. Shekoufa, M. Ebrahimi, and E. Ebrahimie, “Determining the Most Important Physiological and Agronomic Traits Contributing to Maize Grain Yield through Machine Learning Algorithms: A New Avenue in Intelligent Agriculture,” PLoS One, vol. 9 (5), e97288, May 2014. https://doi.org/10.1371/journal.pone.0097288 DOI: https://doi.org/10.1371/journal.pone.0097288
- J. R. Romero, P. F. Roncallo, P. C. Akkiraju, I. Ponzoni, V. C. Echenique, and J. A. Carballido, “Using classification algorithms for predicting durum wheat yield in the province of Buenos Aires,” Computers and Electronics in Agriculture, vol. 96, pp. 173-179, Aug. 2013. https://doi.org/10.1016/j.compag.2013.05.006 DOI: https://doi.org/10.1016/j.compag.2013.05.006
- X. Huang, G. Huang, C. Yu, S. Ni, and L. Yu, “A multiple crop model ensemble for improving broad-scale yield prediction using Bayesian model averaging,” Field Crops Research, vol. 211, pp. 114-124, Sep. 2017. https://doi.org/10.1016/j.fcr.2017.06.011 DOI: https://doi.org/10.1016/j.fcr.2017.06.011
- A. A. V. da Silva, I. A. F. Silva, M. C. M. Teixeira Filho, S. Buzetti, and M. C. M. Teixeira, “Estimate of wheat grain yield as function of nitrogen fertilization using neuro fuzzy modeling,” Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 18 (2), pp. 180-187, Feb. 2014. https://doi.org/10.1590/S1415-43662014000200008 DOI: https://doi.org/10.1590/S1415-43662014000200008
- I. Lopez, J. Plazas, and J. C. Corrales, “A tool for classification of cacao production in Colombia based on multiple classifier systems,” in 17th International Conference Computational Science and Its Applications – ICCSA 2017, Trieste, Italy, Jul. 2017. https://doi.org/10.1007/978-3-319-62395-5_5 DOI: https://doi.org/10.1007/978-3-319-62395-5_5
- E. Somarriba, and J. Beer, “Productivity of Theobroma cacao agroforestry systems with timber or legume service shade trees,” Agroforestry Systems, vol. 81, pp. 109-121, 2011. https://doi.org/10.1007/s10457-010-9364-1 DOI: https://doi.org/10.1007/s10457-010-9364-1
- P. A. Zuidema, P. A. Leffelaar, W. Gerritsma, L. Mommer, and N. P. R. R. Anten, “A physiological production model for cocoa (Theobroma cacao): model presentation, validation and application,” Agricultural Systems, vol. 84 (2), pp. 195-225, May 2005. https://doi.org/10.1016/j.agsy.2004.06.015 DOI: https://doi.org/10.1016/j.agsy.2004.06.015
- L. F. García Carrión, Catalogo de cultivares de cacao del Perú, Lima: Ministerio de Agricultura y Riego, 2010.
- V. Vapnik, The nature of Statistical Learning Theory, New York: Springer-Verlag, 1995. DOI: https://doi.org/10.1007/978-1-4757-2440-0
- H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola, and V. Vapnik, "Support Vector Regression Machines," Neural Information Processing Systems, vol. 9, pp. 1-11, 1997.
- T. Dietterich, Ensemble Methods in Machine Learning. In: Multiple Classifier Systems, Heidelberg: Springer Berlin, 2000. DOI: https://doi.org/10.1007/3-540-45014-9_1
- J. H. Friedman, “Greedy Function Approximation: A Gradient Boosting Machine,” Annals of Statistics, vol. 29 (5), pp. 1189-1232, 2001. DOI: https://doi.org/10.1214/aos/1013203451
- L. Breiman, “Random forests,” Machine Learning, vol. 45 (1), pp. 5-32, 2001. https://doi.org/10.1023/A:1010933404324 DOI: https://doi.org/10.1023/A:1010933404324
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, and B. Thirion, “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.
- T. M. Logan, S. McLeod, and S. Guikema, “Predictive models in horticulture: A case study with Royal Gala apples,” Scientia Horticulturae, vol. 209, pp. 201-213, Sep. 2016. https://doi.org/10.1016/j.scienta.2016.06.033 DOI: https://doi.org/10.1016/j.scienta.2016.06.033
- A. Daymond, and P. Hadley, “The effects of temperature and light integral on early vegetative growth and chloroplyll fluorescence of four contrasting genotypes of cacao,” Annals of Applied Biology, vol. 145 (3), pp. 257-262, 2004. https://doi.org/10.1111/j.1744-7348.2004.tb00381.x DOI: https://doi.org/10.1111/j.1744-7348.2004.tb00381.x
- Y. Ahenkorah, B. Halm, M. Appiah, and G. Akrofi, “Twenty Years’ Results from a Shade and Fertilizer Trial on Amazon Cocoa (Theobroma cacao) in Ghana,” Experimental Agriculture, vol. 23 (1), pp. 31-39, Jan. 1987. https://doi.org/10.1017/s0014479700003380 DOI: https://doi.org/10.1017/S0014479700001101
- O. Deheuvels, J. Avelino, E. Somarriba, and E. Malezieux, “Vegetation structure and productivity in cocoa-based agroforestry systems in Talamanca, Costa Rica,” Agriculture, Ecosystems & Environment, vol. 149, pp. 181-188, Mar. 2012. https://doi.org/doi: 10.1016/j.agee.2011.03.003 DOI: https://doi.org/10.1016/j.agee.2011.03.003
- W. Vanhove, N. Vanhoudt, and P. Van Damme, “Effect of shade tree planting and soil management on rehabilitation success of a 22-year-old degraded cocoa (Theobroma cacao L.) plantation,” Agriculture, Ecosystems & Environment, vol. 219, pp. 14-25, Mar. 2016. https://doi.org/doi: 10.1016/j.agee.2015.12.005 DOI: https://doi.org/10.1016/j.agee.2015.12.005
- B. Utomo, A. A. Prawoto, S. Bonnet, A. Bangviwat, and S. H. Gheewala, “Environmental performance of cocoa production from monoculture and agroforestry systems in Indonesia,” Journal of Cleaner Production, vol. 134 (Part B), pp. 583-591, Oct. 2016. https://doi.org/10.1016/j.jclepro.2015.08.102 DOI: https://doi.org/10.1016/j.jclepro.2015.08.102