Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Detección de tendencias de homicidios en Colombia usando Machine Learning

Resumen

En las últimas décadas, el número de homicidios violentos en América Latina ha crecido considerablemente debido a la ampliación y auge de grupos criminales organizados en zonas rurales y urbanas de las principales ciudades de países como México, Colombia y Venezuela. Con base en el alto índice de homicidio de estos países, consecuencia de la alta criminalidad, éstos han sido clasificados dentro de los más violentos a nivel mundial. Según datos reportados por el Observatorio del Delito de la Policía Nacional y la Fiscalía General de la Nación de Colombia, en 2019 se presentaron 1.032 asesinatos en Bogotá. Estos datos arrojan una tasa de 14,3 homicidios por cada 100.000 habitantes. A partir de esto, se estima que entre 1960 y 2019 se han generado alrededor de 226.215 homicidios, unas 3,834 muertes por año, en promedio. En este trabajo se presenta un modelo de machine learning basado en random forest, el cual permite predecir las tendencias de homicidio violento (HV) en Colombia para los próximos 5 años. El proyecto tiene como objetivo servir de instrumento para facilitar la toma de decisiones en organismos como la Fiscalía General de la Nación y la Policía Nacional. El modelo fue evaluado con un conjunto de datos generado a partir del Sistema de Información Estadístico Delincuencial, Contravencional y Operativo (SIEDCO) de la Fiscalía, el cual cuenta con 2.662.402 registros de delitos realizados en Colombia desde el año 1960 hasta 2019.

Palabras clave

homicidio, machine learning, minería de datos, random forest

PDF XML

Biografía del autor/a

Hugo Armando Ordoñez-Eraso, Ph. D.

Roles: Investigación, Análisis formal, Definición y del modelo, Implementación, Validación del modelo.

César Jesús Pardo-Calvache, Ph. D.

Roles: Investigación, Supervisión, Metodología, Validación, Escritura - revisión y edición.

Carlos Alberto Cobos-Lozada, Ph. D.

Roles: Investigación, Supervisión, Metodología, Validación, Escritura -revisión y edición.


Citas

[1] UNODOC, Global Study on Homicide - Gender-related killing of women and girls. In Unodoc, 2019. https://doi.org/10.1023/B:.0000037731.28786.e3

[2] A. Vazsonyi, J. Wittekind, L. Belliston, and T. Loh, Global Study on Homicide - Homicide trends, patterns and criminal justice response, 2019. https://doi.org/10.1023/B:JOQC.0000037731.28786.e3

[3] M. M. Rogers, and J. E. Storey, “Elder homicide: A systematic literature review,” Aggression and Violent Behavior, vol. 48, pp. 141-151, 2019. https://doi.org/10.1016/j.avb.2019.08.008

[4] F. Li, S. Liu, X. Lu, Y. Ou, and P. S. F. Yip, “Application of the injury scales in homicides,” Forensic Science International, vol. 292, pp. 83-89, 2018. https://doi.org/10.1016/j.forsciint.2018.09.010

[5] M. C. Ingram, and M. Marchesini da Costa, “Political geography of violence: Municipal politics and homicide in Brazil,” World Dev., vol. 124, 2019. https://doi.org/10.1016/j.worlddev.2019.06.016

[6] O. Fals Borda, “La Violencia en Colombia,” Entornos, vol. 29 (2), p. 27, 2016. https://doi.org/10.25054/01247905.1260

[7] M. Neira, and N. H. Martínez, Documentos de Política Pública y Armas y homicidios, Bogotá D. C.: Ministerio de Salud y Protección Social, 2019.

[8] D. E. Goin, K. E. Rudolph, and J. Ahern, “Predictors of firearm violence in urban communities: A machine-learning approach,” Health & Place, vol. 51, pp. 61-67, 2018. https://doi.org/10.1016/j.healthplace.2018.02.013

[9] R. Katuwal, P. N. Suganthan, and L. Zhang, “Heterogeneous oblique random forest,” Pattern Recognition, vol. 99, e107078, 2020. https://doi.org/10.1016/j.patcog.2019.107078

[10] J. L. Speiser, M. E. Miller, J. Tooze, and E. Ip, “A comparison of random forest variable selection methods for classification prediction modeling,” Expert Systems with Applications, vol. 134, pp. 93-101, 2019. http://doi.org/10.1016/j.eswa.2019.05.028

[11] W. C. Regoeczi, and T. D. Miethe, “Homicide,” in International Encyclopedia of the Social & Behavioral Sciences, 2015.

[12] C. Echandía, “Dimensión regional del homicidio en Colombia,” Coyuntura Social, vol. 17, pp. 89-103, 1997.

[13] F. Humberto, S. Murillo, J. Chica, A. Rodríguez, and G. De Cortázar, “The spatial heterogeneity of factors of feminicide : The case of Antioquia- Colombia,” Applied Geography, vol. 92, pp. 63-73, 2018. https://doi.org/10.1016/j.apgeog.2018.01.006

[14] F. J. Escobedo, N. Clerici, C. L. Staudhammer, A. Feged-rivadeneira, J. Camilo, and G. Tovar, “Land Use Policy Trees and Crime in Bogota , Colombia : Is the link an ecosystem disservice or,” Land use policy, vol. 78, pp. 583-592, 2018. https://doi.org/10.1016/j.landusepol.2018.07.029

[15] A. M. Pardo-Monta, “Violence in Colombia and Mexico: trend and impact on life expectancy of homicide mortality between 1998 and 2015,” Public Health, vol. 3, pp. 1-8, 2018. https://doi.org/10.1016/j.puhe.2018.06.001

[16] N. M. Valencia, “Proceso de reconstrucción de memoria,” Revista de Estudios Sociales, vol. 9, pp. 13-38, 2013.

[17] L. C. Cartagena, “Los estudios de la violencia en Colombia antes de la violentología,” Diálogos Revista Electrónica, vol. 17 (1), pp. 1-30, 2015. https://doi.org/10.15517/dre.v17i1.18103

[18] K. Tardiff, P. M. Marzuk, K. Lowell, L. Portera, and A. C. Leon, “A study of drug abuse and other causes of homicide in New York,” Journal of Criminal Justice, vol. 30 (4), pp. 317–325, 2002. https://doi.org/10.1016/S0047-2352(02)00132-0

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a